本文整理匯總了Python中tensorflow.diag_part方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.diag_part方法的具體用法?Python tensorflow.diag_part怎麽用?Python tensorflow.diag_part使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow
的用法示例。
在下文中一共展示了tensorflow.diag_part方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: rank_loss
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import diag_part [as 別名]
def rank_loss(sentence_emb, image_emb, margin=0.2):
"""Experimental rank loss, thanks to kkurach@ for the code."""
with tf.name_scope("rank_loss"):
# Normalize first as this is assumed in cosine similarity later.
sentence_emb = tf.nn.l2_normalize(sentence_emb, 1)
image_emb = tf.nn.l2_normalize(image_emb, 1)
# Both sentence_emb and image_emb have size [batch, depth].
scores = tf.matmul(image_emb, tf.transpose(sentence_emb)) # [batch, batch]
diagonal = tf.diag_part(scores) # [batch]
cost_s = tf.maximum(0.0, margin - diagonal + scores) # [batch, batch]
cost_im = tf.maximum(
0.0, margin - tf.reshape(diagonal, [-1, 1]) + scores) # [batch, batch]
# Clear diagonals.
batch_size = tf.shape(sentence_emb)[0]
empty_diagonal_mat = tf.ones_like(cost_s) - tf.eye(batch_size)
cost_s *= empty_diagonal_mat
cost_im *= empty_diagonal_mat
return tf.reduce_mean(cost_s) + tf.reduce_mean(cost_im)
示例2: _mix_rbf_kernel
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import diag_part [as 別名]
def _mix_rbf_kernel(X, Y, sigmas, wts=None):
if wts is None:
wts = [1] * len(sigmas)
XX = tf.matmul(X, X, transpose_b=True)
XY = tf.matmul(X, Y, transpose_b=True)
YY = tf.matmul(Y, Y, transpose_b=True)
X_sqnorms = tf.diag_part(XX)
Y_sqnorms = tf.diag_part(YY)
r = lambda x: tf.expand_dims(x, 0)
c = lambda x: tf.expand_dims(x, 1)
K_XX, K_XY, K_YY = 0, 0, 0
for sigma, wt in zip(sigmas, wts):
gamma = 1 / (2 * sigma**2)
K_XX += wt * tf.exp(-gamma * (-2 * XX + c(X_sqnorms) + r(X_sqnorms)))
K_XY += wt * tf.exp(-gamma * (-2 * XY + c(X_sqnorms) + r(Y_sqnorms)))
K_YY += wt * tf.exp(-gamma * (-2 * YY + c(Y_sqnorms) + r(Y_sqnorms)))
return K_XX, K_XY, K_YY, tf.reduce_sum(wts)
示例3: build_graph_with_hess
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import diag_part [as 別名]
def build_graph_with_hess(images, labels, loss_function, inference_function, learning_rate, global_step):
optimizer_net = tf.train.AdamOptimizer(learning_rate=learning_rate, beta1=0.95)
tf.summary.scalar('learning_rate', learning_rate)
with tf.variable_scope(tf.get_variable_scope()) as scope:
logits_stoch = inference_function(images, stochastic=True, reuse=False)
probs_stoch = tf.nn.softmax(logits_stoch)
tf.get_variable_scope().reuse_variables()
logits_det = inference_function(images, stochastic=False, reuse=True)
probs_det = tf.nn.softmax(logits_det)
train_loss = loss_function(logits_stoch, labels)
# weights = get_weights()
# for v in weights:
# hess = tf.diag_part(tf.squeeze(tf.hessians(logits_det, v)))
# tf.summary.histogram(v.name + 'hessian', hess)
# print v.name, v.get_shape(), hess.get_shape()
train_op = optimizer_net.minimize(train_loss, global_step=global_step)
return train_op, probs_det, probs_stoch
示例4: call
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import diag_part [as 別名]
def call(self, inputs):
if self.coeffs_mean is None and self.coeffs_precision_tril_op is None:
# p(mean(ynew) | xnew) = Normal(ynew | mean = 0, variance = xnew xnew^T)
predictive_mean = 0.
predictive_variance = tf.reduce_sum(tf.square(inputs), -1)
else:
# p(mean(ynew) | xnew, x, y) = Normal(ynew |
# mean = xnew (1/noise_variance) (1/noise_variance x^T x + I)^{-1}x^T y,
# variance = xnew (1/noise_variance x^T x + I)^{-1} xnew^T)
predictive_mean = tf.einsum('nm,m->n', inputs, self.coeffs_mean)
predictive_covariance = tf.matmul(
inputs,
self.coeffs_precision_tril_op.solve(
self.coeffs_precision_tril_op.solve(inputs, adjoint_arg=True),
adjoint=True))
predictive_variance = tf.diag_part(predictive_covariance)
return ed.Normal(loc=predictive_mean, scale=tf.sqrt(predictive_variance))
示例5: sparse_mean_fg_f1
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import diag_part [as 別名]
def sparse_mean_fg_f1(y_true, y_pred):
y_pred = tf.argmax(y_pred, axis=-1)
# Get confusion matrix
cm = tf.confusion_matrix(tf.reshape(y_true, [-1]),
tf.reshape(y_pred, [-1]))
# Get precisions
TP = tf.diag_part(cm)
precisions = TP / tf.reduce_sum(cm, axis=0)
# Get recalls
TP = tf.diag_part(cm)
recalls = TP / tf.reduce_sum(cm, axis=1)
# Get F1s
f1s = (2 * precisions * recalls) / (precisions + recalls)
return tf.reduce_mean(f1s[1:])
示例6: regularize_diag_off_diag_dip
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import diag_part [as 別名]
def regularize_diag_off_diag_dip(covariance_matrix, lambda_od, lambda_d):
"""Compute on and off diagonal regularizers for DIP-VAE models.
Penalize deviations of covariance_matrix from the identity matrix. Uses
different weights for the deviations of the diagonal and off diagonal entries.
Args:
covariance_matrix: Tensor of size [num_latent, num_latent] to regularize.
lambda_od: Weight of penalty for off diagonal elements.
lambda_d: Weight of penalty for diagonal elements.
Returns:
dip_regularizer: Regularized deviation from diagonal of covariance_matrix.
"""
covariance_matrix_diagonal = tf.diag_part(covariance_matrix)
covariance_matrix_off_diagonal = covariance_matrix - tf.diag(
covariance_matrix_diagonal)
dip_regularizer = tf.add(
lambda_od * tf.reduce_sum(covariance_matrix_off_diagonal**2),
lambda_d * tf.reduce_sum((covariance_matrix_diagonal - 1)**2))
return dip_regularizer
示例7: _mix_rbf_kernel
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import diag_part [as 別名]
def _mix_rbf_kernel(X, Y, sigmas=[1.], wts=None):
if wts is None:
wts = [1] * len(sigmas)
XX = tf.matmul(X, X, transpose_b=True)
XY = tf.matmul(X, Y, transpose_b=True)
YY = tf.matmul(Y, Y, transpose_b=True)
X_sqnorms = tf.diag_part(XX)
Y_sqnorms = tf.diag_part(YY)
r = lambda x: tf.expand_dims(x, 0)
c = lambda x: tf.expand_dims(x, 1)
K_XX, K_XY, K_YY = 0, 0, 0
for sigma, wt in zip(sigmas, wts):
gamma = 1 / (2 * sigma**2)
K_XX += wt * tf.exp(-gamma * (-2 * XX + c(X_sqnorms) + r(X_sqnorms)))
K_XY += wt * tf.exp(-gamma * (-2 * XY + c(X_sqnorms) + r(Y_sqnorms)))
K_YY += wt * tf.exp(-gamma * (-2 * YY + c(Y_sqnorms) + r(Y_sqnorms)))
return K_XX, K_XY, K_YY, tf.reduce_sum(wts)
示例8: matrix_mean_wo_diagonal
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import diag_part [as 別名]
def matrix_mean_wo_diagonal(matrix, num_row, num_col=None, name='mu_wo_diag'):
""" This function calculates the mean of the matrix elements not in the diagonal
2018.4.9 - replace tf.diag_part with tf.matrix_diag_part
tf.matrix_diag_part can be used for rectangle matrix while tf.diag_part can only be used for square matrix
:param matrix:
:param num_row:
:type num_row: float
:param num_col:
:type num_col: float
:param name:
:return:
"""
with tf.name_scope(name):
if num_col is None:
mu = (tf.reduce_sum(matrix) - tf.reduce_sum(tf.matrix_diag_part(matrix))) / (num_row * (num_row - 1.0))
else:
mu = (tf.reduce_sum(matrix) - tf.reduce_sum(tf.matrix_diag_part(matrix))) \
/ (num_row * num_col - tf.minimum(num_col, num_row))
return mu
########################################################################
示例9: gradStep
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import diag_part [as 別名]
def gradStep(cls, data, mu, tau, v, e):
swidths = tf.constant(np.array([0., 1e-9, 1e-8, 1e-7, 1e-6, 1e-4, 1e-3,
1e-2, 1e-1, 1e0, 1e1, 1e2,
1e3])[..., None, None],
dtype=data.dtype)
for i in range(5):
llhs = cls.llh(parameters={"mu": mu,
"tau": 1./(v+e**2-e*mu)},
data=data)
llhs = tf.reduce_mean(llhs, axis=0)
signGradMu = tf.sign(tf.gradients(llhs, [mu])[0])
mus = mu+signGradMu*swidths
taus = 1./(v+e**2-e*mus)
tauIsNonPositive = tf.less_equal(taus, 0.)
mus = tf.where(tauIsNonPositive, tf.zeros_like(mus), mus)
taus = tf.where(tauIsNonPositive, 1./tf.reduce_mean(data, axis=0)*tf.ones_like(taus), taus)
newLlhs = cls.llh(parameters={"mu": mus,
"tau": taus},
data=data[None])
newLlhs = tf.reduce_mean(newLlhs, axis=-2, keepdims=True)
argmax = tf.cast(tf.argmax(newLlhs, axis=0)[0], dtype=tf.int32)
mu = tf.gather(mus[:, 0], argmax)
mu = tf.diag_part(mu)
tau = tf.gather(taus[:, 0], argmax)
tau = tf.diag_part(tau)
return(mu, tau)
示例10: _pairwise_distances
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import diag_part [as 別名]
def _pairwise_distances(embeddings, squared=False):
"""Compute the 2D matrix of distances between all the embeddings.
Args:
embeddings: tensor of shape (batch_size, embed_dim)
squared: Boolean. If true, output is the pairwise squared euclidean distance matrix.
If false, output is the pairwise euclidean distance matrix.
Returns:
pairwise_distances: tensor of shape (batch_size, batch_size)
"""
# Get the dot product between all embeddings
# shape (batch_size, batch_size)
dot_product = tf.matmul(embeddings, tf.transpose(embeddings))
# Get squared L2 norm for each embedding. We can just take the diagonal of `dot_product`.
# This also provides more numerical stability (the diagonal of the result will be exactly 0).
# shape (batch_size,)
square_norm = tf.diag_part(dot_product)
# Compute the pairwise distance matrix as we have:
# ||a - b||^2 = ||a||^2 - 2 <a, b> + ||b||^2
# shape (batch_size, batch_size)
distances = tf.expand_dims(square_norm, 1) - 2.0 * dot_product + tf.expand_dims(square_norm, 0)
# Because of computation errors, some distances might be negative so we put everything >= 0.0
distances = tf.maximum(distances, 0.0)
if not squared:
# Because the gradient of sqrt is infinite when distances == 0.0 (ex: on the diagonal)
# we need to add a small epsilon where distances == 0.0
mask = tf.to_float(tf.equal(distances, 0.0))
distances = distances + mask * 1e-16
distances = tf.sqrt(distances)
# Correct the epsilon added: set the distances on the mask to be exactly 0.0
distances = distances * (1.0 - mask)
return distances
示例11: test_DiagPart
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import diag_part [as 別名]
def test_DiagPart(self):
t = tf.diag_part(self.random(3, 3))
self.check(t)
示例12: compute_pairwise_squared_distance
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import diag_part [as 別名]
def compute_pairwise_squared_distance(matrix):
pairwise_dot = tf.matmul(matrix, matrix, transpose_b=True)
squared_norm = tf.diag_part(pairwise_dot)
sq_dist = squared_norm[:, None] + squared_norm[None, :] - 2 * pairwise_dot
return sq_dist
示例13: bag_attention
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import diag_part [as 別名]
def bag_attention(x, scope, query, rel_tot, is_training, var_scope=None, dropout_before=False, keep_prob=1.0):
with tf.variable_scope(var_scope or "attention", reuse=tf.AUTO_REUSE):
if is_training: # training
if dropout_before:
x = __dropout__(x, keep_prob)
bag_repre = []
attention_logit = __attention_train_logit__(x, query, rel_tot)
for i in range(scope.shape[0]):
bag_hidden_mat = x[scope[i][0]:scope[i][1]]
attention_score = tf.nn.softmax(attention_logit[scope[i][0]:scope[i][1]], -1)
bag_repre.append(tf.squeeze(tf.matmul(tf.expand_dims(attention_score, 0), bag_hidden_mat))) # (1, n') x (n', hidden_size) = (1, hidden_size) -> (hidden_size)
bag_repre = tf.stack(bag_repre)
if not dropout_before:
bag_repre = __dropout__(bag_repre, keep_prob)
return __logit__(bag_repre, rel_tot), bag_repre
else: # testing
attention_logit = __attention_test_logit__(x, rel_tot) # (n, rel_tot)
bag_repre = []
bag_logit = []
for i in range(scope.shape[0]):
bag_hidden_mat = x[scope[i][0]:scope[i][1]]
attention_score = tf.nn.softmax(tf.transpose(attention_logit[scope[i][0]:scope[i][1], :]), -1) # softmax of (rel_tot, n')
bag_repre_for_each_rel = tf.matmul(attention_score, bag_hidden_mat) # (rel_tot, n') \dot (n', hidden_size) = (rel_tot, hidden_size)
bag_logit_for_each_rel = __logit__(bag_repre_for_each_rel, rel_tot) # -> (rel_tot, rel_tot)
bag_repre.append(bag_repre_for_each_rel)
bag_logit.append(tf.diag_part(tf.nn.softmax(bag_logit_for_each_rel, -1))) # could be improved by sigmoid?
bag_repre = tf.stack(bag_repre)
bag_logit = tf.stack(bag_logit)
return bag_logit, bag_repre
示例14: decov_loss
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import diag_part [as 別名]
def decov_loss(xs):
"""Decov loss as described in https://arxiv.org/pdf/1511.06068.pdf
'Reducing Overfitting In Deep Networks by Decorrelating Representation'
"""
x = tf.reshape(xs, [int(xs.get_shape()[0]), -1])
m = tf.reduce_mean(x, 0, True)
z = tf.expand_dims(x-m, 2)
corr = tf.reduce_mean(tf.matmul(z, tf.transpose(z, perm=[0,2,1])), 0)
corr_frob_sqr = tf.reduce_sum(tf.square(corr))
corr_diag_sqr = tf.reduce_sum(tf.square(tf.diag_part(corr)))
loss = 0.5*(corr_frob_sqr - corr_diag_sqr)
return loss
示例15: __init__
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import diag_part [as 別名]
def __init__(self, is_training, word_embeddings, simple_position = False):
NN.__init__(self, is_training, word_embeddings, simple_position)
with tf.name_scope("conv-maxpool"):
input_sentence = tf.expand_dims(self.input_embedding, axis=1)
x = tf.layers.conv2d(inputs = input_sentence, filters=FLAGS.hidden_size, kernel_size=[1,3], strides=[1, 1], padding='same', kernel_initializer=tf.contrib.layers.xavier_initializer_conv2d())
x = tf.reduce_max(x, axis=2)
x = tf.nn.relu(tf.squeeze(x))
if FLAGS.katt_flag != 0:
stack_repre = self.katt(x, is_training)
else:
stack_repre = self.att(x, is_training)
with tf.name_scope("loss"):
logits = tf.matmul(stack_repre, tf.transpose(self.relation_matrix)) + self.bias
self.loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=self.label,logits=logits))
self.loss = tf.losses.softmax_cross_entropy(onehot_labels = self.label, logits = logits, weights = self.weights)
self.output = tf.nn.softmax(logits)
tf.summary.scalar('loss',self.loss)
self.predictions = tf.argmax(logits, 1, name="predictions")
self.correct_predictions = tf.equal(self.predictions, tf.argmax(self.label, 1))
self.accuracy = tf.reduce_mean(tf.cast(self.correct_predictions, "float"), name="accuracy")
if not is_training:
with tf.name_scope("test"):
if FLAGS.katt_flag != 0:
test_attention_logit = self.katt_test(x)
else:
test_attention_logit = self.att_test(x)
test_tower_output = []
for i in range(FLAGS.test_batch_size):
test_attention_score = tf.nn.softmax(tf.transpose(test_attention_logit[self.scope[i]:self.scope[i+1],:]))
final_repre = tf.matmul(test_attention_score, x[self.scope[i]:self.scope[i+1]])
logits = tf.matmul(final_repre, tf.transpose(self.relation_matrix)) + self.bias
output = tf.diag_part(tf.nn.softmax(logits))
test_tower_output.append(output)
test_stack_output = tf.reshape(tf.stack(test_tower_output),[FLAGS.test_batch_size, self.num_classes])
self.test_output = test_stack_output