本文整理匯總了Python中tensorflow.device方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.device方法的具體用法?Python tensorflow.device怎麽用?Python tensorflow.device使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow
的用法示例。
在下文中一共展示了tensorflow.device方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: autosummary
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import device [as 別名]
def autosummary(name, value):
id = name.replace('/', '_')
if is_tf_expression(value):
with tf.name_scope('summary_' + id), tf.device(value.device):
update_op = _create_autosummary_var(name, value)
with tf.control_dependencies([update_op]):
return tf.identity(value)
else: # python scalar or numpy array
if name not in _autosummary_immediate:
with absolute_name_scope('Autosummary/' + id), tf.device(None), tf.control_dependencies(None):
update_value = tf.placeholder(tf.float32)
update_op = _create_autosummary_var(name, update_value)
_autosummary_immediate[name] = update_op, update_value
update_op, update_value = _autosummary_immediate[name]
run(update_op, {update_value: np.float32(value)})
return value
# Create the necessary ops to include autosummaries in TensorBoard report.
# Note: This should be done only once per graph.
示例2: finalize_autosummaries
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import device [as 別名]
def finalize_autosummaries():
global _autosummary_finalized
if _autosummary_finalized:
return
_autosummary_finalized = True
init_uninited_vars([var for vars in _autosummary_vars.values() for var in vars])
with tf.device(None), tf.control_dependencies(None):
for name, vars in _autosummary_vars.items():
id = name.replace('/', '_')
with absolute_name_scope('Autosummary/' + id):
sum = tf.add_n(vars)
avg = sum[0] / sum[1]
with tf.control_dependencies([avg]): # read before resetting
reset_ops = [tf.assign(var, tf.zeros(2)) for var in vars]
with tf.name_scope(None), tf.control_dependencies(reset_ops): # reset before reporting
tf.summary.scalar(name, avg)
# Internal helper for creating autosummary accumulators.
示例3: undo_loss_scaling
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import device [as 別名]
def undo_loss_scaling(self, value):
assert is_tf_expression(value)
if not self.use_loss_scaling:
return value
return value * exp2(-self.get_loss_scaling_var(value.device))
#----------------------------------------------------------------------------
# Generic network abstraction.
#
# Acts as a convenience wrapper for a parameterized network construction
# function, providing several utility methods and convenient access to
# the inputs/outputs/weights.
#
# Network objects can be safely pickled and unpickled for long-term
# archival purposes. The pickling works reliably as long as the underlying
# network construction function is defined in a standalone Python module
# that has no side effects or application-specific imports.
示例4: testPS
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import device [as 別名]
def testPS(self):
deploy_config = model_deploy.DeploymentConfig(num_clones=1, num_ps_tasks=1)
self.assertDeviceEqual(deploy_config.clone_device(0),
'/job:worker/device:GPU:0')
self.assertEqual(deploy_config.clone_scope(0), '')
self.assertDeviceEqual(deploy_config.optimizer_device(),
'/job:worker/device:CPU:0')
self.assertDeviceEqual(deploy_config.inputs_device(),
'/job:worker/device:CPU:0')
with tf.device(deploy_config.variables_device()):
a = tf.Variable(0)
b = tf.Variable(0)
c = tf.no_op()
d = slim.variable('a', [],
caching_device=deploy_config.caching_device())
self.assertDeviceEqual(a.device, '/job:ps/task:0/device:CPU:0')
self.assertDeviceEqual(a.device, a.value().device)
self.assertDeviceEqual(b.device, '/job:ps/task:0/device:CPU:0')
self.assertDeviceEqual(b.device, b.value().device)
self.assertDeviceEqual(c.device, '')
self.assertDeviceEqual(d.device, '/job:ps/task:0/device:CPU:0')
self.assertDeviceEqual(d.value().device, '')
示例5: testVariablesPS
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import device [as 別名]
def testVariablesPS(self):
deploy_config = model_deploy.DeploymentConfig(num_ps_tasks=2)
with tf.device(deploy_config.variables_device()):
a = tf.Variable(0)
b = tf.Variable(0)
c = tf.no_op()
d = slim.variable('a', [],
caching_device=deploy_config.caching_device())
self.assertDeviceEqual(a.device, '/job:ps/task:0/device:CPU:0')
self.assertDeviceEqual(a.device, a.value().device)
self.assertDeviceEqual(b.device, '/job:ps/task:1/device:CPU:0')
self.assertDeviceEqual(b.device, b.value().device)
self.assertDeviceEqual(c.device, '')
self.assertDeviceEqual(d.device, '/job:ps/task:0/device:CPU:0')
self.assertDeviceEqual(d.value().device, '')
示例6: testCreateLogisticClassifier
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import device [as 別名]
def testCreateLogisticClassifier(self):
g = tf.Graph()
with g.as_default():
tf.set_random_seed(0)
tf_inputs = tf.constant(self._inputs, dtype=tf.float32)
tf_labels = tf.constant(self._labels, dtype=tf.float32)
model_fn = LogisticClassifier
clone_args = (tf_inputs, tf_labels)
deploy_config = model_deploy.DeploymentConfig(num_clones=1)
self.assertEqual(slim.get_variables(), [])
clones = model_deploy.create_clones(deploy_config, model_fn, clone_args)
clone = clones[0]
self.assertEqual(len(slim.get_variables()), 2)
for v in slim.get_variables():
self.assertDeviceEqual(v.device, 'CPU:0')
self.assertDeviceEqual(v.value().device, 'CPU:0')
self.assertEqual(clone.outputs.op.name,
'LogisticClassifier/fully_connected/Sigmoid')
self.assertEqual(clone.scope, '')
self.assertDeviceEqual(clone.device, 'GPU:0')
self.assertEqual(len(slim.losses.get_losses()), 1)
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
self.assertEqual(update_ops, [])
示例7: testCreateSingleclone
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import device [as 別名]
def testCreateSingleclone(self):
g = tf.Graph()
with g.as_default():
tf.set_random_seed(0)
tf_inputs = tf.constant(self._inputs, dtype=tf.float32)
tf_labels = tf.constant(self._labels, dtype=tf.float32)
model_fn = BatchNormClassifier
clone_args = (tf_inputs, tf_labels)
deploy_config = model_deploy.DeploymentConfig(num_clones=1)
self.assertEqual(slim.get_variables(), [])
clones = model_deploy.create_clones(deploy_config, model_fn, clone_args)
clone = clones[0]
self.assertEqual(len(slim.get_variables()), 5)
for v in slim.get_variables():
self.assertDeviceEqual(v.device, 'CPU:0')
self.assertDeviceEqual(v.value().device, 'CPU:0')
self.assertEqual(clone.outputs.op.name,
'BatchNormClassifier/fully_connected/Sigmoid')
self.assertEqual(clone.scope, '')
self.assertDeviceEqual(clone.device, 'GPU:0')
self.assertEqual(len(slim.losses.get_losses()), 1)
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
self.assertEqual(len(update_ops), 2)
示例8: testCreateOnecloneWithPS
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import device [as 別名]
def testCreateOnecloneWithPS(self):
g = tf.Graph()
with g.as_default():
tf.set_random_seed(0)
tf_inputs = tf.constant(self._inputs, dtype=tf.float32)
tf_labels = tf.constant(self._labels, dtype=tf.float32)
model_fn = BatchNormClassifier
clone_args = (tf_inputs, tf_labels)
deploy_config = model_deploy.DeploymentConfig(num_clones=1,
num_ps_tasks=1)
self.assertEqual(slim.get_variables(), [])
clones = model_deploy.create_clones(deploy_config, model_fn, clone_args)
self.assertEqual(len(clones), 1)
clone = clones[0]
self.assertEqual(clone.outputs.op.name,
'BatchNormClassifier/fully_connected/Sigmoid')
self.assertDeviceEqual(clone.device, '/job:worker/device:GPU:0')
self.assertEqual(clone.scope, '')
self.assertEqual(len(slim.get_variables()), 5)
for v in slim.get_variables():
self.assertDeviceEqual(v.device, '/job:ps/task:0/CPU:0')
self.assertDeviceEqual(v.device, v.value().device)
示例9: testNoSummariesOnGPUForEvals
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import device [as 別名]
def testNoSummariesOnGPUForEvals(self):
with tf.Graph().as_default():
deploy_config = model_deploy.DeploymentConfig(num_clones=2)
# clone function creates a fully_connected layer with a regularizer loss.
def ModelFn():
inputs = tf.constant(1.0, shape=(10, 20), dtype=tf.float32)
reg = tf.contrib.layers.l2_regularizer(0.001)
tf.contrib.layers.fully_connected(inputs, 30, weights_regularizer=reg)
# No optimizer here, it's an eval.
model = model_deploy.deploy(deploy_config, ModelFn)
# The model summary op should have a few summary inputs and all of them
# should be on the CPU.
self.assertTrue(model.summary_op.op.inputs)
for inp in model.summary_op.op.inputs:
self.assertEqual('/device:CPU:0', inp.device)
示例10: _optimize_clone
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import device [as 別名]
def _optimize_clone(optimizer, clone, num_clones, regularization_losses,
**kwargs):
"""Compute losses and gradients for a single clone.
Args:
optimizer: A tf.Optimizer object.
clone: A Clone namedtuple.
num_clones: The number of clones being deployed.
regularization_losses: Possibly empty list of regularization_losses
to add to the clone losses.
**kwargs: Dict of kwarg to pass to compute_gradients().
Returns:
A tuple (clone_loss, clone_grads_and_vars).
- clone_loss: A tensor for the total loss for the clone. Can be None.
- clone_grads_and_vars: List of (gradient, variable) for the clone.
Can be empty.
"""
sum_loss = _gather_clone_loss(clone, num_clones, regularization_losses)
clone_grad = None
if sum_loss is not None:
with tf.device(clone.device):
clone_grad = optimizer.compute_gradients(sum_loss, **kwargs)
return sum_loss, clone_grad
示例11: _add_train_op
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import device [as 別名]
def _add_train_op(self):
"""Sets self._train_op, op to run for training."""
hps = self._hps
self._lr_rate = tf.maximum(
hps.min_lr, # min_lr_rate.
tf.train.exponential_decay(hps.lr, self.global_step, 30000, 0.98))
tvars = tf.trainable_variables()
with tf.device(self._get_gpu(self._num_gpus-1)):
grads, global_norm = tf.clip_by_global_norm(
tf.gradients(self._loss, tvars), hps.max_grad_norm)
tf.summary.scalar('global_norm', global_norm)
optimizer = tf.train.GradientDescentOptimizer(self._lr_rate)
tf.summary.scalar('learning rate', self._lr_rate)
self._train_op = optimizer.apply_gradients(
zip(grads, tvars), global_step=self.global_step, name='train_step')
示例12: main
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import device [as 別名]
def main(_):
"""Train a word2vec model."""
if not FLAGS.train_data or not FLAGS.eval_data or not FLAGS.save_path:
print("--train_data --eval_data and --save_path must be specified.")
sys.exit(1)
opts = Options()
with tf.Graph().as_default(), tf.Session() as session:
with tf.device("/cpu:0"):
model = Word2Vec(opts, session)
model.read_analogies() # Read analogy questions
for _ in xrange(opts.epochs_to_train):
model.train() # Process one epoch
model.eval() # Eval analogies.
# Perform a final save.
model.saver.save(session, os.path.join(opts.save_path, "model.ckpt"),
global_step=model.global_step)
if FLAGS.interactive:
# E.g.,
# [0]: model.analogy(b'france', b'paris', b'russia')
# [1]: model.nearby([b'proton', b'elephant', b'maxwell'])
_start_shell(locals())
示例13: main
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import device [as 別名]
def main(_):
"""Train a word2vec model."""
if not FLAGS.train_data or not FLAGS.eval_data or not FLAGS.save_path:
print("--train_data --eval_data and --save_path must be specified.")
sys.exit(1)
opts = Options()
with tf.Graph().as_default(), tf.Session() as session:
with tf.device("/cpu:0"):
model = Word2Vec(opts, session)
model.read_analogies() # Read analogy questions
for _ in xrange(opts.epochs_to_train):
model.train() # Process one epoch
model.eval() # Eval analogies.
# Perform a final save.
model.saver.save(session,
os.path.join(opts.save_path, "model.ckpt"),
global_step=model.global_step)
if FLAGS.interactive:
# E.g.,
# [0]: model.analogy(b'france', b'paris', b'russia')
# [1]: model.nearby([b'proton', b'elephant', b'maxwell'])
_start_shell(locals())
示例14: get_hint_pool_idxs
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import device [as 別名]
def get_hint_pool_idxs(self, normalized_query):
"""Get small set of idxs to compute nearest neighbor queries on.
This is an expensive look-up on the whole memory that is used to
avoid more expensive operations later on.
Args:
normalized_query: A Tensor of shape [None, key_dim].
Returns:
A Tensor of shape [None, choose_k] of indices in memory
that are closest to the queries.
"""
# look up in large memory, no gradients
with tf.device(self.nn_device):
similarities = tf.matmul(tf.stop_gradient(normalized_query),
self.mem_keys, transpose_b=True, name='nn_mmul')
_, hint_pool_idxs = tf.nn.top_k(
tf.stop_gradient(similarities), k=self.choose_k, name='nn_topk')
return hint_pool_idxs
示例15: testVariableWithVariableDeviceChooser
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import device [as 別名]
def testVariableWithVariableDeviceChooser(self):
with tf.Graph().as_default():
device_fn = variables.VariableDeviceChooser(num_parameter_servers=2)
with scopes.arg_scope([variables.variable], device=device_fn):
a = variables.variable('a', [])
b = variables.variable('b', [])
c = variables.variable('c', [], device='cpu:12')
d = variables.variable('d', [])
with tf.device('cpu:99'):
e_init = tf.constant(12)
e = variables.variable('e', initializer=e_init)
# The values below highlight how the VariableDeviceChooser puts initial
# values on the same device as the variable job.
self.assertDeviceEqual(a.device, '/job:ps/task:0/cpu:0')
self.assertDeviceEqual(a.initial_value.device, a.device)
self.assertDeviceEqual(b.device, '/job:ps/task:1/cpu:0')
self.assertDeviceEqual(b.initial_value.device, b.device)
self.assertDeviceEqual(c.device, '/cpu:12')
self.assertDeviceEqual(c.initial_value.device, c.device)
self.assertDeviceEqual(d.device, '/job:ps/task:0/cpu:0')
self.assertDeviceEqual(d.initial_value.device, d.device)
self.assertDeviceEqual(e.device, '/job:ps/task:1/cpu:0')
self.assertDeviceEqual(e.initial_value.device, '/cpu:99')