當前位置: 首頁>>代碼示例>>Python>>正文


Python tensorflow.depth_to_space方法代碼示例

本文整理匯總了Python中tensorflow.depth_to_space方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.depth_to_space方法的具體用法?Python tensorflow.depth_to_space怎麽用?Python tensorflow.depth_to_space使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.depth_to_space方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: depth_to_space

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import depth_to_space [as 別名]
def depth_to_space(input, scale, data_format=None):
    """ Uses phase shift algorithm to convert channels/depth for spatial resolution.

    # Arguments
        input: Input tensor
        scale: n `int` that is `>= 2`. The size of the spatial block.
        data_format: 'channels_first' or 'channels_last'.
            Whether to use Theano or TensorFlow dimension
            ordering in inputs/kernels/ouputs.

    # Returns
        TODO (PR welcome): Filling this section.
    """
    if data_format is None:
        data_format = K.image_data_format()
    data_format = data_format.lower()
    input = _preprocess_conv2d_input(input, data_format)
    out = tf.depth_to_space(input, scale)
    out = _postprocess_conv2d_output(out, data_format)
    return out 
開發者ID:keras-team,項目名稱:keras-contrib,代碼行數:22,代碼來源:tensorflow_backend.py

示例2: vae_simple_decoder

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import depth_to_space [as 別名]
def vae_simple_decoder(z, scope="VAESimpleDecoder"):
  def _upsample_conv2d(net, factor, filters, **kwargs):
    net = tf.layers.conv2d(net, filters=factor*factor*filters, **kwargs)
    net = tf.depth_to_space(net, block_size=factor)

    return net

  with tf.variable_scope(scope):
    endpoints = {}

    net = z  # shape (b, 1, 1, c)
    net = _upsample_conv2d(
      net, kernel_size=3, filters=128, factor=16, activation=tf.nn.relu,
      padding="SAME")  # shape out: (b, 16, 16, 128)
    net = _upsample_conv2d(
      net, kernel_size=3, filters=512, factor=2, activation=tf.nn.relu,
      padding="SAME")  # shape out: (b, 32, 32, 512)
    net = _upsample_conv2d(
      net, kernel_size=3, filters=512, factor=2, activation=tf.nn.relu,
      padding="SAME")  # shape out: (b, 64, 64, 512)
    net = tf.layers.conv2d(net, kernel_size=3, filters=3, padding="SAME")

    return net, endpoints 
開發者ID:ogroth,項目名稱:tf-gqn,代碼行數:25,代碼來源:gqn_vae.py

示例3: upsample_conv

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import depth_to_space [as 別名]
def upsample_conv(inputs, num_outputs, kernel_size, sn, activation_fn=None,
                  normalizer_fn=None, normalizer_params=None,
                  weights_regularizer=None,
                  weights_initializer=ly.xavier_initializer_conv2d(),
                  biases_initializer=tf.zeros_initializer(),
                  data_format='NCHW'):
    output = inputs
    output = tf.concat([output, output, output, output], axis=1 if data_format == 'NCHW' else 3)
    if data_format == 'NCHW':
        output = tf.transpose(output, [0, 2, 3, 1])
    output = tf.depth_to_space(output, 2)
    if data_format == 'NCHW':
        output = tf.transpose(output, [0, 3, 1, 2])
    output = conv2d(output, num_outputs, kernel_size, sn=sn, activation_fn=activation_fn,
                    normalizer_fn=normalizer_fn, normalizer_params=normalizer_params,
                    weights_regularizer=weights_regularizer, weights_initializer=weights_initializer,
                    biases_initializer=biases_initializer,
                    data_format=data_format)
    return output 
開發者ID:SketchyScene,項目名稱:SketchySceneColorization,代碼行數:21,代碼來源:mru.py

示例4: forward

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import depth_to_space [as 別名]
def forward(self, x, is_train):  
        # shape of x: [B,T_in,H,W,C]

        # Generate filters and residual
        # Fx: [B,1,H,W,1*5*5,R*R]
        # Rx: [B,1,H,W,3*R*R]
        with tf.variable_scope('G',reuse=tf.AUTO_REUSE) as scope:
            Fx, Rx = FR_52L(x, is_train) 

            x_c = []
            for c in range(3):
                t = DynFilter3D(x[:,self.num_frames//2:self.num_frames//2+1,:,:,c], Fx[:,0,:,:,:,:], [1,5,5]) # [B,H,W,R*R]
                t = tf.depth_to_space(t, self.scale) # [B,H*R,W*R,1]
                x_c += [t]
            x = tf.concat(x_c, axis=3)   # [B,H*R,W*R,3]
            x = tf.expand_dims(x, axis=1)

            Rx = depth_to_space_3D(Rx, self.scale)   # [B,1,H*R,W*R,3]
            x += Rx
            
            return x 
開發者ID:psychopa4,項目名稱:PFNL,代碼行數:23,代碼來源:dufvsr.py

示例5: upsample2d_block

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import depth_to_space [as 別名]
def upsample2d_block(
        inputs,
        filters,
        kernel_size,
        strides,
        shuffle_size=2,
        name_prefix='upsample2d_block_'):
    h1 = conv2d_layer(inputs=inputs, filters=filters, kernel_size=kernel_size, strides=strides, activation=None,
                      name=name_prefix + 'h1_conv')
    h1_shuffle = tf.depth_to_space(input=h1, block_size=2, name='h1_shuffle')
    h1_norm = instance_norm_layer(inputs=h1_shuffle, activation_fn=None, name=name_prefix + 'h1_norm')

    h1_gates = conv2d_layer(inputs=inputs, filters=filters, kernel_size=kernel_size, strides=strides, activation=None,
                            name=name_prefix + 'h1_gates')
    h1_shuffle_gates = tf.depth_to_space(input=h1_gates, block_size=2, name='h1_shuffle_gates')
    h1_norm_gates = instance_norm_layer(inputs=h1_shuffle_gates, activation_fn=None, name=name_prefix + 'h1_norm_gates')

    h1_glu = gated_linear_layer(inputs=h1_norm, gates=h1_norm_gates, name=name_prefix + 'h1_glu')

    return h1_glu 
開發者ID:njellinas,項目名稱:GAN-Voice-Conversion,代碼行數:22,代碼來源:modules.py

示例6: build_graph

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import depth_to_space [as 別名]
def build_graph(self):
    super(FFDNet, self).build_graph()  # build inputs placeholder
    with tf.variable_scope(self.name):
      # build layers
      inputs = self.inputs_preproc[-1] / 255
      if self.training:
        sigma = tf.random_uniform((), maxval=self.sigma / 255)
        inputs += tf.random_normal(tf.shape(inputs)) * sigma
      else:
        sigma = self.sigma / 255
      inputs = tf.space_to_depth(inputs, block_size=self.space_down)
      noise_map = tf.ones_like(inputs)[..., 0:1] * sigma
      x = tf.concat([inputs, noise_map], axis=-1)
      x = self.relu_conv2d(x, 64, 3)
      for i in range(1, self.layers - 1):
        x = self.bn_relu_conv2d(x, 64, 3, use_bias=False)
      # the last layer w/o BN and ReLU
      x = self.conv2d(x, self.channel * self.space_down ** 2, 3)
      denoised = tf.depth_to_space(x, block_size=self.space_down)
      self.outputs.append(denoised * 255) 
開發者ID:LoSealL,項目名稱:VideoSuperResolution,代碼行數:22,代碼來源:FFDNet.py

示例7: subpixel

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import depth_to_space [as 別名]
def subpixel(inp, nfm, upscale=2, name='subpixel'):
    # assert inp.get_shape().as_list()[1] % upscale == 0
    output = conv2d(inp, nout=nfm * (upscale ** 2), kernel=1, name=name, print_struct=False)
    output = tf.transpose(output, [0, 2, 3, 1])
    output = tf.depth_to_space(output, upscale)
    output = tf.transpose(output, [0, 3, 1, 2])
    print name + ': ' + str(output.get_shape().as_list())
    return output 
開發者ID:cs-chan,項目名稱:ArtGAN,代碼行數:10,代碼來源:layers.py

示例8: decompress_step

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import depth_to_space [as 別名]
def decompress_step(source, hparams, first_relu, is_2d, name):
  """Decompression function."""
  with tf.variable_scope(name):
    shape = common_layers.shape_list(source)
    multiplier = 4 if is_2d else 2
    kernel = (1, 1) if is_2d else (1, 1)
    thicker = common_layers.conv_block(
        source, hparams.hidden_size * multiplier, [((1, 1), kernel)],
        first_relu=first_relu, name="decompress_conv")
    if is_2d:
      return tf.depth_to_space(thicker, 2)
    return tf.reshape(thicker, [shape[0], shape[1] * 2, 1, hparams.hidden_size]) 
開發者ID:akzaidi,項目名稱:fine-lm,代碼行數:14,代碼來源:transformer_vae.py

示例9: layer_conv_dts

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import depth_to_space [as 別名]
def layer_conv_dts(self, net, args, options):
        options = hc.Config(options)
        config = self.config
        ops = self.ops

        self.ops.activation_name = options.activation_name
        activation_s = options.activation or self.ops.config_option("activation")
        activation = self.ops.lookup(activation_s)

        stride = options.stride or self.ops.config_option("stride", [1,1])[0]
        stride = int(stride)
        fltr = options.filter or self.ops.config_option("filter", [3,3])
        if type(fltr) == type(""):
            fltr=[int(fltr), int(fltr)]
        depth = int(args[0])

        initializer = None # default to global

        trainable = True
        if options.trainable == 'false':
            trainable = False
        bias = True
        if options.bias == 'false':
            bias=False
        net = ops.conv2d(net, fltr[0], fltr[1], stride, stride, depth*4, initializer=initializer, trainable=trainable, bias=bias)
        s = ops.shape(net)
        net = tf.depth_to_space(net, 2)
        if activation:
            #net = self.layer_regularizer(net)
            net = activation(net)

        avg_pool = options.avg_pool or self.ops.config_option("avg_pool")
        if type(avg_pool) == type(""):
            avg_pool = [int(avg_pool), int(avg_pool)]
        if avg_pool:
            ksize = [1,avg_pool[0], avg_pool[1],1]
            stride = ksize
            net = tf.nn.avg_pool(net, ksize=ksize, strides=stride, padding='SAME')

        return net 
開發者ID:HyperGAN,項目名稱:HyperGAN,代碼行數:42,代碼來源:configurable_component.py

示例10: SubpixelConv2D

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import depth_to_space [as 別名]
def SubpixelConv2D(*args, **kwargs):
    kwargs['output_dim'] = 4*kwargs['output_dim']
    output = lib.ops.conv2d.Conv2D(*args, **kwargs)
    output = tf.transpose(output, [0,2,3,1])
    output = tf.depth_to_space(output, 2)
    output = tf.transpose(output, [0,3,1,2])
    return output 
開發者ID:igul222,項目名稱:improved_wgan_training,代碼行數:9,代碼來源:gan_64x64.py

示例11: UpsampleConv

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import depth_to_space [as 別名]
def UpsampleConv(name, input_dim, output_dim, filter_size, inputs, he_init=True, biases=True):
    output = inputs
    output = tf.concat([output, output, output, output], axis=1)
    output = tf.transpose(output, [0,2,3,1])
    output = tf.depth_to_space(output, 2)
    output = tf.transpose(output, [0,3,1,2])
    output = lib.ops.conv2d.Conv2D(name, input_dim, output_dim, filter_size, output, he_init=he_init, biases=biases)
    return output 
開發者ID:igul222,項目名稱:improved_wgan_training,代碼行數:10,代碼來源:gan_64x64.py

示例12: conv_pixel_shuffle_up

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import depth_to_space [as 別名]
def conv_pixel_shuffle_up(x, scale_factor=2, use_bias=True, sn=False, scope='pixel_shuffle'):
    channel = x.get_shape()[-1] * (scale_factor ** 2)
    x = conv(x, channel, kernel=1, stride=1, use_bias=use_bias, sn=sn, scope=scope)
    x = tf.depth_to_space(x, block_size=scale_factor)

    return x 
開發者ID:taki0112,項目名稱:Tensorflow-Cookbook,代碼行數:8,代碼來源:ops.py

示例13: UpsampleConv

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import depth_to_space [as 別名]
def UpsampleConv(input, output_dim, filter_size, name, spectral_normed=False, update_collection=None, he_init=True):
    output = input
    output = tf.concat([output, output, output, output], axis=3)
    output = tf.depth_to_space(output, 2)
    return conv2d(output, output_dim, filter_size, spectral_normed=spectral_normed,
                  update_collection=update_collection, name=name, he_init=he_init) 
開發者ID:ermongroup,項目名稱:generative_adversary,代碼行數:8,代碼來源:resnet_ops.py

示例14: depth_to_space

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import depth_to_space [as 別名]
def depth_to_space(input, scale, data_format=None):
    ''' Uses phase shift algorithm to convert channels/depth for spatial resolution '''
    data_format = 'NHWC'

    data_format = data_format.lower()
    out = tf.depth_to_space(input, scale, data_format=data_format)
    return out 
開發者ID:OlafenwaMoses,項目名稱:ImageAI,代碼行數:9,代碼來源:tensorflow_backend.py

示例15: upsample

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import depth_to_space [as 別名]
def upsample(x):
    x = tf.concat([x, x, x, x], axis=-1)
    x = tf.depth_to_space(x, 2)

    return x

##################################################################################
# Activation function
################################################################################## 
開發者ID:taki0112,項目名稱:SphereGAN-Tensorflow,代碼行數:11,代碼來源:ops.py


注:本文中的tensorflow.depth_to_space方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。