本文整理匯總了Python中tensorflow.decode_raw方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.decode_raw方法的具體用法?Python tensorflow.decode_raw怎麽用?Python tensorflow.decode_raw使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow
的用法示例。
在下文中一共展示了tensorflow.decode_raw方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: read_from_tfrecord
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import decode_raw [as 別名]
def read_from_tfrecord(filenames):
tfrecord_file_queue = tf.train.string_input_producer(filenames, name='queue')
reader = tf.TFRecordReader()
_, tfrecord_serialized = reader.read(tfrecord_file_queue)
tfrecord_features = tf.parse_single_example(tfrecord_serialized, features={
'label': tf.FixedLenFeature([],tf.int64),
'shape': tf.FixedLenFeature([],tf.string),
'image': tf.FixedLenFeature([],tf.string),
}, name='features')
image = tf.decode_raw(tfrecord_features['image'], tf.uint8)
shape = tf.decode_raw(tfrecord_features['shape'], tf.int32)
image = tf.reshape(image, shape)
label = tfrecord_features['label']
return label, shape, image
示例2: read_and_decode
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import decode_raw [as 別名]
def read_and_decode(filename_queue):
reader = tf.TFRecordReader()
_, serialized_example = reader.read(filename_queue)
features = tf.parse_single_example(
serialized_example,
# Defaults are not specified since both keys are required.
features={
'image_raw': tf.FixedLenFeature([], tf.string),
})
image = tf.decode_raw(features['image_raw'], tf.uint8)
image = tf.reshape(image, [227, 227, 6])
# Convert from [0, 255] -> [-0.5, 0.5] floats.
image = tf.cast(image, tf.float32) * (1. / 255) - 0.5
return tf.split(image, 2, 2) # 3rd dimension two parts
示例3: read_and_decode_aug
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import decode_raw [as 別名]
def read_and_decode_aug(filename_queue):
reader = tf.TFRecordReader()
_, serialized_example = reader.read(filename_queue)
features = tf.parse_single_example(
serialized_example,
# Defaults are not specified since both keys are required.
features={
'image_raw': tf.FixedLenFeature([], tf.string),
})
image = tf.decode_raw(features['image_raw'], tf.uint8)
image = tf.image.random_flip_left_right(tf.reshape(image, [227, 227, 6]))
# Convert from [0, 255] -> [-0.5, 0.5] floats.
image = tf.cast(image, tf.float32) * (1. / 255) - 0.5
image = tf.image.random_brightness(image, 0.01)
image = tf.image.random_contrast(image, 0.95, 1.05)
return tf.split(image, 2, 2) # 3rd dimension two parts
示例4: parse_fn
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import decode_raw [as 別名]
def parse_fn(self, serialized_example):
features={
'image/id_name': tf.FixedLenFeature([], tf.string),
'image/height' : tf.FixedLenFeature([], tf.int64),
'image/width' : tf.FixedLenFeature([], tf.int64),
'image/encoded': tf.FixedLenFeature([], tf.string),
}
for name in self.feature_list:
features[name] = tf.FixedLenFeature([], tf.int64)
example = tf.parse_single_example(serialized_example, features=features)
image = tf.decode_raw(example['image/encoded'], tf.uint8)
raw_height = tf.cast(example['image/height'], tf.int32)
raw_width = tf.cast(example['image/width'], tf.int32)
image = tf.reshape(image, [raw_height, raw_width, 3])
image = tf.image.resize_images(image, size=[self.height, self.width])
# from IPython import embed; embed(); exit()
feature_val_list = [tf.cast(example[name], tf.float32) for name in self.feature_list]
return image, feature_val_list
示例5: parse_fun
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import decode_raw [as 別名]
def parse_fun(serialized_example):
""" Data parsing function.
"""
features = tf.parse_single_example(serialized_example,
features={'image': tf.FixedLenFeature([], tf.string),
'label': tf.FixedLenFeature([], tf.int64),
'height': tf.FixedLenFeature([], tf.int64),
'width': tf.FixedLenFeature([], tf.int64),
'depth': tf.FixedLenFeature([], tf.int64)})
height = tf.cast(features['height'], tf.int32)
width = tf.cast(features['width'], tf.int32)
depth = tf.cast(features['depth'], tf.int32)
image = tf.decode_raw(features['image'], tf.float32)
image = tf.reshape(image, shape=[height * width * depth])
image.set_shape([28 * 28 * 1])
image = tf.cast(image, tf.float32) * (1. / 255)
label = tf.cast(features['label'], tf.int32)
features = {'images': image, 'labels': label}
return(features)
示例6: _extract_features_batch
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import decode_raw [as 別名]
def _extract_features_batch(self, serialized_batch):
features = tf.parse_example(
serialized_batch,
features={'images': tf.FixedLenFeature([], tf.string),
'imagepaths': tf.FixedLenFeature([], tf.string),
'labels': tf.VarLenFeature(tf.int64),
})
bs = features['images'].shape[0]
images = tf.decode_raw(features['images'], tf.uint8)
w, h = tuple(CFG.ARCH.INPUT_SIZE)
images = tf.cast(x=images, dtype=tf.float32)
#images = tf.subtract(tf.divide(images, 128.0), 1.0)
images = tf.reshape(images, [bs, h, -1, CFG.ARCH.INPUT_CHANNELS])
labels = features['labels']
labels = tf.cast(labels, tf.int32)
imagepaths = features['imagepaths']
return images, labels, imagepaths
開發者ID:Mingtzge,項目名稱:2019-CCF-BDCI-OCR-MCZJ-OCR-IdentificationIDElement,代碼行數:23,代碼來源:read_tfrecord.py
示例7: parse_color_data
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import decode_raw [as 別名]
def parse_color_data(example_proto):
features = {"img_raw": tf.FixedLenFeature([], tf.string),
"label": tf.FixedLenFeature([], tf.string),
"width": tf.FixedLenFeature([], tf.int64),
"height": tf.FixedLenFeature([], tf.int64)}
parsed_features = tf.parse_single_example(example_proto, features)
img = parsed_features["img_raw"]
img = tf.decode_raw(img, tf.uint8)
width = parsed_features["width"]
height = parsed_features["height"]
img = tf.reshape(img, [height, width, 3])
img = tf.cast(img, tf.float32) * (1. / 255.) - 0.5
label = parsed_features["label"]
label = tf.decode_raw(label, tf.float32)
return img, label
示例8: read_and_decode
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import decode_raw [as 別名]
def read_and_decode(filename_queue):
reader = tf.TFRecordReader()
_, serialized_example = reader.read(filename_queue)
features = tf.parse_single_example(
serialized_example,
features={
'image_raw': tf.FixedLenFeature([], tf.string),
'label': tf.FixedLenFeature([], tf.int64),
})
image = tf.decode_raw(features['image_raw'], tf.uint8)
image.set_shape([784])
image = tf.cast(image, tf.float32) * (1. / 255)
label = tf.cast(features['label'], tf.int32)
return image, label
示例9: decode_pred
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import decode_raw [as 別名]
def decode_pred(serialized_example):
"""Parses prediction data from the given `serialized_example`."""
features = tf.parse_single_example(
serialized_example,
features={
'T1':tf.FixedLenFeature([],tf.string),
'T2':tf.FixedLenFeature([], tf.string)
})
patch_shape = [conf.patch_size, conf.patch_size, conf.patch_size]
# Convert from a scalar string tensor
image_T1 = tf.decode_raw(features['T1'], tf.int16)
image_T1 = tf.reshape(image_T1, patch_shape)
image_T2 = tf.decode_raw(features['T2'], tf.int16)
image_T2 = tf.reshape(image_T2, patch_shape)
# Convert dtype.
image_T1 = tf.cast(image_T1, tf.float32)
image_T2 = tf.cast(image_T2, tf.float32)
label = tf.zeros(image_T1.shape) # pseudo label
return image_T1, image_T2, label
示例10: parse_tfrecord_tf
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import decode_raw [as 別名]
def parse_tfrecord_tf(record, res, rnd_crop):
features = tf.parse_single_example(record, features={
'shape': tf.FixedLenFeature([3], tf.int64),
'data': tf.FixedLenFeature([], tf.string),
'label': tf.FixedLenFeature([1], tf.int64)})
# label is always 0 if uncondtional
# to get CelebA attr, add 'attr': tf.FixedLenFeature([40], tf.int64)
data, label, shape = features['data'], features['label'], features['shape']
label = tf.cast(tf.reshape(label, shape=[]), dtype=tf.int32)
img = tf.decode_raw(data, tf.uint8)
if rnd_crop:
# For LSUN Realnvp only - random crop
img = tf.reshape(img, shape)
img = tf.random_crop(img, [res, res, 3])
img = tf.reshape(img, [res, res, 3])
return img, label # to get CelebA attr, also return attr
示例11: get_tfrecords_features
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import decode_raw [as 別名]
def get_tfrecords_features(self) -> dict:
"""
Return dict, possibly nested, with feature names as keys and its
serialized type as values of type :obj:`FixedLenFeature`.
Keys should not have any '/', use nested dict instead.
Returns
-------
features
features inside of tfrecords file
See Also
--------
output_types
:func:`tf.decode_raw`
"""
示例12: decode_field
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import decode_raw [as 別名]
def decode_field(self,
field_name: str,
field_value: Union[tf.Tensor, tf.SparseTensor],
field_type: Optional[tf.DType] = None) -> tf.Tensor:
"""
Decode a field from a tfrecord example
Parameters
----------
field_name
name of the field, if nested - will be separated using "/"
field_value
value of the field from tfrecords example
field_type
type of the decoded field from self.get_tfrecords_output_types
or None, if it was not provided
"""
# pylint: disable=no-self-use
# is designed to be overridden
# pylint: disable=unused-argument
# this method is really an interface, but has a default implementation.
if field_type is None:
return field_value
return tf.decode_raw(field_value, field_type)
示例13: tf_record_parser
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import decode_raw [as 別名]
def tf_record_parser(record):
keys_to_features = {
"image_raw": tf.FixedLenFeature((), tf.string, default_value=""),
'annotation_raw': tf.FixedLenFeature([], tf.string),
"height": tf.FixedLenFeature((), tf.int64),
"width": tf.FixedLenFeature((), tf.int64)
}
features = tf.parse_single_example(record, keys_to_features)
image = tf.decode_raw(features['image_raw'], tf.uint8)
annotation = tf.decode_raw(features['annotation_raw'], tf.uint8)
height = tf.cast(features['height'], tf.int32)
width = tf.cast(features['width'], tf.int32)
# reshape input and annotation images
image = tf.reshape(image, (height, width, 3), name="image_reshape")
annotation = tf.reshape(annotation, (height, width, 1), name="annotation_reshape")
annotation = tf.to_int32(annotation)
return tf.to_float(image), annotation, (height, width)
示例14: read_image
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import decode_raw [as 別名]
def read_image(file_queue):
reader = tf.TFRecordReader()
# key, value = reader.read(file_queue)
_, serialized_example = reader.read(file_queue)
features = tf.parse_single_example(
serialized_example,
features={
'label': tf.FixedLenFeature([], tf.string),
'image_raw': tf.FixedLenFeature([], tf.string)
})
image = tf.decode_raw(features['image_raw'], tf.uint8)
# print('image ' + str(image))
image = tf.reshape(image, [INPUT_IMG_WIDE, INPUT_IMG_HEIGHT, INPUT_IMG_CHANNEL])
# image = tf.image.convert_image_dtype(image, dtype=tf.float32)
# image = tf.image.resize_images(image, (IMG_HEIGHT, IMG_WIDE))
# image = tf.cast(image, tf.float32) * (1. / 255) - 0.5
label = tf.decode_raw(features['label'], tf.uint8)
# label = tf.cast(label, tf.int64)
label = tf.reshape(label, [OUTPUT_IMG_WIDE, OUTPUT_IMG_HEIGHT])
# label = tf.decode_raw(features['image_raw'], tf.uint8)
# print(label)
# label = tf.reshape(label, shape=[1, 4])
return image, label
示例15: read_my_file_format
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import decode_raw [as 別名]
def read_my_file_format(filename_queue):
image_reader = tf.WholeFileReader()
_, image_data = image_reader.read(filename_queue)
# Convert from a string to a vector of uint8 that is record_bytes long.
record_bytes = tf.decode_raw(image_data, tf.uint8)
# The first bytes represent the label, which we convert from uint8->float32.
labels_ = tf.cast(tf.slice(record_bytes, [0], [LSPGlobals.TotalLabels]), tf.float32)
# The remaining bytes after the label represent the image, which we reshape
# from [depth * height * width] to [depth, height, width].
depth_major = tf.reshape(tf.slice(record_bytes, [LSPGlobals.TotalLabels], [LSPGlobals.TotalImageBytes]),
[FLAGS.input_size, FLAGS.input_size, FLAGS.input_depth])
# Convert from [depth, height, width] to [height, width, depth].
#processed_example = tf.cast(tf.transpose(depth_major, [1, 2, 0]), tf.float32)
return depth_major, labels_