當前位置: 首頁>>代碼示例>>Python>>正文


Python tensorflow.decode_csv方法代碼示例

本文整理匯總了Python中tensorflow.decode_csv方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.decode_csv方法的具體用法?Python tensorflow.decode_csv怎麽用?Python tensorflow.decode_csv使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.decode_csv方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _decode_csv

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import decode_csv [as 別名]
def _decode_csv(line):
    """Takes the string input tensor and returns a dict of rank-2 tensors."""

    # Takes a rank-1 tensor and converts it into rank-2 tensor
    # Example if the data is ['csv,line,1', 'csv,line,2', ..] to
    # [['csv,line,1'], ['csv,line,2']] which after parsing will result in a
    # tuple of tensors: [['csv'], ['csv']], [['line'], ['line']], [[1], [2]]
    row_columns = tf.expand_dims(line, -1)
    columns = tf.decode_csv(
        row_columns, record_defaults=constants.CSV_COLUMN_DEFAULTS)
    features = dict(zip(constants.CSV_COLUMNS, columns))

    # Remove unused columns
    unused_columns = set(constants.CSV_COLUMNS) - {col.name for col in
                                                   featurizer.INPUT_COLUMNS} - {
                         constants.LABEL_COLUMN}
    for col in unused_columns:
        features.pop(col)
    return features 
開發者ID:GoogleCloudPlatform,項目名稱:cloudml-samples,代碼行數:21,代碼來源:input.py

示例2: get_input_fn

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import decode_csv [as 別名]
def get_input_fn(csv_path, mode=tf.estimator.ModeKeys.TRAIN, batch_size=32, cutoff=5):
    def input_fn():
        def parse_csv(value):
            columns = tf.decode_csv(value, DEFAULTS)
            features = dict(zip(COLUMNS, columns))
            label = features.pop(LABEL_COL)
            label = tf.math.greater_equal(label, cutoff)
            return features, label

        # read, parse, shuffle and batch dataset
        dataset = tf.data.TextLineDataset(csv_path).skip(1)  # skip header
        if mode == tf.estimator.ModeKeys.TRAIN:
            # shuffle and repeat
            dataset = dataset.shuffle(16 * batch_size).repeat()

        dataset = dataset.map(parse_csv, num_parallel_calls=8)
        dataset = dataset.batch(batch_size)
        return dataset

    return input_fn 
開發者ID:yxtay,項目名稱:recommender-tensorflow,代碼行數:22,代碼來源:ml_100k.py

示例3: tf_csv_dataset

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import decode_csv [as 別名]
def tf_csv_dataset(csv_path, label_col, col_defaults, shuffle=False, batch_size=32):
    df = dd.read_csv(csv_path)
    # use col_defaults if specified for col, else use defaults base on col type
    type_defaults = {np.int64: 0, np.float64: 0.0, np.object_: ""}
    record_defaults = [[col_defaults.get(col_name, type_defaults.get(col_type.type, ""))]
                       for col_name, col_type in df.dtypes.items()]

    def parse_csv(value):
        columns = tf.decode_csv(value, record_defaults)
        features = dict(zip(df.columns.tolist(), columns))
        label = features[label_col]
        return features, label

    # read, parse, shuffle and batch dataset
    dataset = tf.data.TextLineDataset(csv_path).skip(1)  # skip header
    if shuffle:
        dataset = dataset.shuffle(buffer_size=1024)
    dataset = dataset.map(parse_csv, num_parallel_calls=8)
    dataset = dataset.batch(batch_size)
    return dataset 
開發者ID:yxtay,項目名稱:recommender-tensorflow,代碼行數:22,代碼來源:tf_utils.py

示例4: load_train_dataset

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import decode_csv [as 別名]
def load_train_dataset(dataset_location, batch_size, num_epochs):
    """Load the training data using TF Dataset API"""

    with tf.name_scope('train_dataset_loading'):

        record_defaults = [[1], [1], [0.]] # Sets the type of the resulting tensors and default values
        # Dataset is in the format - UserID ProductID Rating
        dataset = tf.data.TextLineDataset(dataset_location).map(lambda line: tf.decode_csv(line, record_defaults=record_defaults))
        dataset = dataset.shuffle(buffer_size=10000)
        dataset = dataset.batch(batch_size)
        dataset = dataset.prefetch(5)
        dataset = dataset.cache()
        dataset = dataset.repeat(num_epochs)
        iterator = dataset.make_one_shot_iterator()
        user_batch, product_batch, label_batch = iterator.get_next()
        label_batch = tf.expand_dims(label_batch, 1)

    return user_batch, product_batch, label_batch 
開發者ID:criteo-research,項目名稱:CausE,代碼行數:20,代碼來源:utils.py

示例5: my_input_fn

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import decode_csv [as 別名]
def my_input_fn(file_path, perform_shuffle=False, repeat_count=1):
    def decode_csv(line):
        parsed_line = tf.decode_csv(line, [[0.], [0.], [0.], [0.], [0]])
        label = parsed_line[-1]  # Last element is the label
        del parsed_line[-1]  # Delete last element
        features = parsed_line  # Everything but last elements are the features
        d = dict(zip(feature_names, features)), label
        return d

    dataset = (tf.data.TextLineDataset(file_path)  # Read text file
               .skip(1)  # Skip header row
               .map(decode_csv))  # Transform each elem by applying decode_csv fn
    if perform_shuffle:
        # Randomizes input using a window of 256 elements (read into memory)
        dataset = dataset.shuffle(buffer_size=256)
    dataset = dataset.repeat(repeat_count)  # Repeats dataset this # times
    dataset = dataset.batch(32)  # Batch size to use
    iterator = dataset.make_one_shot_iterator()
    batch_features, batch_labels = iterator.get_next()
    return batch_features, batch_labels 
開發者ID:rky0930,項目名稱:yolo_v2,代碼行數:22,代碼來源:blog_estimators_dataset.py

示例6: my_input_fn

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import decode_csv [as 別名]
def my_input_fn(file_path, repeat_count=1, shuffle_count=1):
    def decode_csv(line):
        parsed_line = tf.decode_csv(line, [[0.], [0.], [0.], [0.], [0]])
        label = parsed_line[-1]  # Last element is the label
        del parsed_line[-1]  # Delete last element
        features = parsed_line  # Everything but last elements are the features
        d = dict(zip(feature_names, features)), label
        return d

    dataset = (tf.data.TextLineDataset(file_path)  # Read text file
        .skip(1)  # Skip header row
        .map(decode_csv, num_parallel_calls=4)  # Decode each line
        .cache() # Warning: Caches entire dataset, can cause out of memory
        .shuffle(shuffle_count)  # Randomize elems (1 == no operation)
        .repeat(repeat_count)    # Repeats dataset this # times
        .batch(32)
        .prefetch(1)  # Make sure you always have 1 batch ready to serve
    )
    iterator = dataset.make_one_shot_iterator()
    batch_features, batch_labels = iterator.get_next()
    return batch_features, batch_labels 
開發者ID:rky0930,項目名稱:yolo_v2,代碼行數:23,代碼來源:blog_custom_estimators.py

示例7: _voc_seg_load_file

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import decode_csv [as 別名]
def _voc_seg_load_file(path, epochs=None, shuffle=True, seed=0):

    PASCAL_ROOT = os.environ['VOC_DIR']
    filename_queue = tf.train.string_input_producer([path],
            num_epochs=epochs, shuffle=shuffle, seed=seed)

    reader = tf.TextLineReader()
    key, value = reader.read(filename_queue)
    image_path, seg_path = tf.decode_csv(value, record_defaults=[[''], ['']], field_delim=' ')

    image_abspath = PASCAL_ROOT + image_path
    seg_abspath = PASCAL_ROOT + seg_path

    image_content = tf.read_file(image_abspath)
    image = decode_image(image_content, channels=3)
    image.set_shape([None, None, 3])

    imgshape = tf.shape(image)[:2]
    imgname = image_path

    seg_content = tf.read_file(seg_abspath)
    seg = tf.cast(tf.image.decode_png(seg_content, channels=1), tf.int32)
    return image, seg, imgshape, imgname 
開發者ID:gustavla,項目名稱:self-supervision,代碼行數:25,代碼來源:datasets.py

示例8: _imagenet_load_file

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import decode_csv [as 別名]
def _imagenet_load_file(path, epochs=None, shuffle=True, seed=0, subset='train', prepare_path=True):
    IMAGENET_ROOT = os.environ.get('IMAGENET_DIR', '')
    if not isinstance(path, list):
        path = [path]
    filename_queue = tf.train.string_input_producer(path,
            num_epochs=epochs, shuffle=shuffle, seed=seed)

    reader = tf.TextLineReader()
    key, value = reader.read(filename_queue)
    image_path, label_str = tf.decode_csv(value, record_defaults=[[''], ['']], field_delim=' ')

    if prepare_path:
        image_abspath = IMAGENET_ROOT + '/images/' + subset + image_path
    else:
        image_abspath = image_path

    image_content = tf.read_file(image_abspath)
    image = decode_image(image_content, channels=3)
    image.set_shape([None, None, 3])

    imgshape = tf.shape(image)[:2]
    label = tf.string_to_number(label_str, out_type=tf.int32)

    return image, label, imgshape, image_path 
開發者ID:gustavla,項目名稱:self-supervision,代碼行數:26,代碼來源:datasets.py

示例9: _relpath_no_label_load_file

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import decode_csv [as 別名]
def _relpath_no_label_load_file(path, root_path, epochs=None, shuffle=True, seed=0):
    filename_queue = tf.train.string_input_producer([path],
            num_epochs=epochs, shuffle=shuffle, seed=seed)

    reader = tf.TextLineReader()
    key, value = reader.read(filename_queue)
    #image_path, = tf.decode_csv(value, record_defaults=[['']], field_delim=' ')
    image_path = value

    image_abspath = root_path + '/' + image_path

    image_content = tf.read_file(image_abspath)
    image = decode_image(image_content, channels=3)
    image.set_shape([None, None, 3])

    imgshape = tf.shape(image)[:2]

    return image, imgshape, image_path 
開發者ID:gustavla,項目名稱:self-supervision,代碼行數:20,代碼來源:datasets.py

示例10: _abspath_no_label_load_file

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import decode_csv [as 別名]
def _abspath_no_label_load_file(path, epochs=None, shuffle=True, seed=0):
    filename_queue = tf.train.string_input_producer([path],
            num_epochs=epochs, shuffle=shuffle, seed=seed)

    reader = tf.TextLineReader()
    key, value = reader.read(filename_queue)
    #image_path, = tf.decode_csv(value, record_defaults=[['']], field_delim=' ')
    image_path = value

    image_abspath = image_path

    image_content = tf.read_file(image_abspath)
    image = decode_image(image_content, channels=3)
    image.set_shape([None, None, 3])

    imgshape = tf.shape(image)[:2]

    return image, imgshape, image_path 
開發者ID:gustavla,項目名稱:self-supervision,代碼行數:20,代碼來源:datasets.py

示例11: _test

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import decode_csv [as 別名]
def _test(self, args, expected_out=None, expected_err_re=None):
    with self.test_session() as sess:
      decode = tf.decode_csv(**args)

      if expected_err_re is None:
        out = sess.run(decode)

        for i, field in enumerate(out):
          if field.dtype == np.float32:
            self.assertAllClose(field, expected_out[i])
          else:
            self.assertAllEqual(field, expected_out[i])

      else:
        with self.assertRaisesOpError(expected_err_re):
          sess.run(decode) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:18,代碼來源:decode_csv_op_test.py

示例12: testManagedEndOfInputOneQueue

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import decode_csv [as 別名]
def testManagedEndOfInputOneQueue(self):
    # Tests that the supervisor finishes without an error when using
    # a fixed number of epochs, reading from a single queue.
    logdir = _test_dir("managed_end_of_input_one_queue")
    os.makedirs(logdir)
    data_path = self._csv_data(logdir)
    with tf.Graph().as_default():
      # Create an input pipeline that reads the file 3 times.
      filename_queue = tf.train.string_input_producer([data_path], num_epochs=3)
      reader = tf.TextLineReader()
      _, csv = reader.read(filename_queue)
      rec = tf.decode_csv(csv, record_defaults=[[1], [1], [1]])
      sv = tf.train.Supervisor(logdir=logdir)
      with sv.managed_session("") as sess:
        while not sv.should_stop():
          sess.run(rec) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:18,代碼來源:supervisor_test.py

示例13: testManagedEndOfInputTwoQueues

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import decode_csv [as 別名]
def testManagedEndOfInputTwoQueues(self):
    # Tests that the supervisor finishes without an error when using
    # a fixed number of epochs, reading from two queues, the second
    # one producing a batch from the first one.
    logdir = _test_dir("managed_end_of_input_two_queues")
    os.makedirs(logdir)
    data_path = self._csv_data(logdir)
    with tf.Graph().as_default():
      # Create an input pipeline that reads the file 3 times.
      filename_queue = tf.train.string_input_producer([data_path], num_epochs=3)
      reader = tf.TextLineReader()
      _, csv = reader.read(filename_queue)
      rec = tf.decode_csv(csv, record_defaults=[[1], [1], [1]])
      shuff_rec = tf.train.shuffle_batch(rec, 1, 6, 4)
      sv = tf.train.Supervisor(logdir=logdir)
      with sv.managed_session("") as sess:
        while not sv.should_stop():
          sess.run(shuff_rec) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:20,代碼來源:supervisor_test.py

示例14: testManagedMainErrorTwoQueues

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import decode_csv [as 別名]
def testManagedMainErrorTwoQueues(self):
    # Tests that the supervisor correctly raises a main loop
    # error even when using multiple queues for input.
    logdir = _test_dir("managed_main_error_two_queues")
    os.makedirs(logdir)
    data_path = self._csv_data(logdir)
    with self.assertRaisesRegexp(RuntimeError, "fail at step 3"):
      with tf.Graph().as_default():
        # Create an input pipeline that reads the file 3 times.
        filename_queue = tf.train.string_input_producer([data_path],
                                                        num_epochs=3)
        reader = tf.TextLineReader()
        _, csv = reader.read(filename_queue)
        rec = tf.decode_csv(csv, record_defaults=[[1], [1], [1]])
        shuff_rec = tf.train.shuffle_batch(rec, 1, 6, 4)
        sv = tf.train.Supervisor(logdir=logdir)
        with sv.managed_session("") as sess:
          for step in range(9):
            if sv.should_stop():
              break
            elif step == 3:
              raise RuntimeError("fail at step 3")
            else:
              sess.run(shuff_rec) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:26,代碼來源:supervisor_test.py

示例15: read_image_and_label

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import decode_csv [as 別名]
def read_image_and_label(image_label_q):
    # Returns three Tensors: the decoded PNG image, the hour, and the minute.
    filename, hour_str, minute_str = tf.decode_csv(
        image_label_q.dequeue(), [[""], [""], [""]], " ")
    file_contents = tf.read_file(filename)

    # Decode image from PNG, and cast it to a float.
    example = tf.image.decode_png(file_contents, channels=image_channels)
    image = tf.cast(example, tf.float32)

    # Set the tensor size manually from the image.
    image.set_shape([image_size, image_size, image_channels])

    # Do per-image whitening (zero mean, unit standard deviation). Without this,
    # the learning algorithm diverges almost immediately because the gradient is
    # too big.
    image = tf.image.per_image_whitening(image)

    # The label should be an integer.
    hour = tf.string_to_number(hour_str, out_type=tf.int32)
    minute = tf.string_to_number(minute_str, out_type=tf.int32)

    return image, hour, minute 
開發者ID:felixduvallet,項目名稱:deep-time-reading,代碼行數:25,代碼來源:clock_data.py


注:本文中的tensorflow.decode_csv方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。