本文整理匯總了Python中tensorflow.decode_base64方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.decode_base64方法的具體用法?Python tensorflow.decode_base64怎麽用?Python tensorflow.decode_base64使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow
的用法示例。
在下文中一共展示了tensorflow.decode_base64方法的4個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: load_base64_tensor
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import decode_base64 [as 別名]
def load_base64_tensor(_input):
import tensorflow as tf
def decode_and_process(base64):
_bytes = tf.decode_base64(base64)
_image = __tf_jpeg_process(_bytes)
return _image
# we have to do some preprocessing with map_fn, since functions like
# decode_*, resize_images and crop_to_bounding_box do not support
# processing of batches
image = tf.map_fn(decode_and_process, _input,
back_prop=False, dtype=tf.float32)
return image
示例2: add_png_decoding
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import decode_base64 [as 別名]
def add_png_decoding(input_width, input_height, input_depth):
"""Adds operations that perform PNG decoding and resizing to the graph..
Args:
input_width: The image width.
input_height: The image height.
input_depth: The image channels.
Returns:
Tensors for the node to feed PNG data into, and the output of the
preprocessing steps.
"""
base64_str = tf.placeholder(tf.string, name='input_string')
input_str = tf.decode_base64(base64_str)
decoded_image = tf.image.decode_png(input_str, channels=input_depth)
# Convert from full range of uint8 to range [0,1] of float32.
decoded_image_as_float = tf.image.convert_image_dtype(decoded_image,
tf.float32)
decoded_image_4d = tf.expand_dims(decoded_image_as_float, 0)
resize_shape = tf.stack([input_height, input_width])
resize_shape_as_int = tf.cast(resize_shape, dtype=tf.int32)
resized_image = tf.image.resize_bilinear(decoded_image_4d,
resize_shape_as_int)
tf.identity(resized_image, name="DecodePNGOutput")
return input_str, resized_image
示例3: _create_model
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import decode_base64 [as 別名]
def _create_model(self, dir_name):
"""Create a simple model that takes 'key', 'num1', 'text1', 'img_url1' input."""
def _decode_jpg(image):
img_buf = BytesIO()
Image.new('RGB', (16, 16)).save(img_buf, 'jpeg')
default_image_string = base64.urlsafe_b64encode(img_buf.getvalue())
image = tf.where(tf.equal(image, ''), default_image_string, image)
image = tf.decode_base64(image)
image = tf.image.decode_jpeg(image, channels=3)
image = tf.reshape(image, [-1])
image = tf.reduce_max(image)
return image
model_dir = tempfile.mkdtemp()
with tf.Session(graph=tf.Graph()) as sess:
record_defaults = [
tf.constant([0], dtype=tf.int64),
tf.constant([0.0], dtype=tf.float32),
tf.constant([''], dtype=tf.string),
tf.constant([''], dtype=tf.string),
]
placeholder = tf.placeholder(dtype=tf.string, shape=(None,), name='csv_input_placeholder')
key_tensor, num_tensor, text_tensor, img_tensor = tf.decode_csv(placeholder, record_defaults)
text_tensor = tf.string_to_number(text_tensor, tf.float32)
img_tensor = tf.map_fn(_decode_jpg, img_tensor, back_prop=False, dtype=tf.uint8)
img_tensor = tf.cast(img_tensor, tf.float32)
stacked = tf.stack([num_tensor, text_tensor, img_tensor])
min_tensor = tf.reduce_min(stacked, axis=0)
max_tensor = tf.reduce_max(stacked, axis=0)
predict_input_tensor = tf.saved_model.utils.build_tensor_info(placeholder)
predict_signature_inputs = {"input": predict_input_tensor}
predict_output_tensor1 = tf.saved_model.utils.build_tensor_info(min_tensor)
predict_output_tensor2 = tf.saved_model.utils.build_tensor_info(max_tensor)
predict_key_tensor = tf.saved_model.utils.build_tensor_info(key_tensor)
predict_signature_outputs = {
'key': predict_key_tensor,
'var1': predict_output_tensor1,
'var2': predict_output_tensor2
}
predict_signature_def = (
tf.saved_model.signature_def_utils.build_signature_def(
predict_signature_inputs, predict_signature_outputs,
tf.saved_model.signature_constants.PREDICT_METHOD_NAME
)
)
signature_def_map = {
signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY: predict_signature_def
}
model_dir = os.path.join(self._test_dir, dir_name)
builder = tf.saved_model.builder.SavedModelBuilder(model_dir)
builder.add_meta_graph_and_variables(
sess, [tf.saved_model.tag_constants.SERVING],
signature_def_map=signature_def_map)
builder.save(False)
return model_dir
示例4: main
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import decode_base64 [as 別名]
def main():
mnist = input_data.read_data_sets("./input_data")
x = tf.placeholder(tf.float32, [None, 784])
logits = inference(x)
y_ = tf.placeholder(tf.int64, [None])
cross_entropy = tf.losses.sparse_softmax_cross_entropy(
labels=y_, logits=logits)
train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)
init_op = tf.global_variables_initializer()
# Define op for model signature
tf.get_variable_scope().reuse_variables()
model_base64_placeholder = tf.placeholder(
shape=[None], dtype=tf.string, name="model_input_b64_images")
model_base64_string = tf.decode_base64(model_base64_placeholder)
model_base64_input = tf.map_fn(lambda x: tf.image.resize_images(tf.image.decode_jpeg(x, channels=1), [28, 28]), model_base64_string, dtype=tf.float32)
model_base64_reshape_input = tf.reshape(model_base64_input, [-1, 28 * 28])
model_logits = inference(model_base64_reshape_input)
model_predict_softmax = tf.nn.softmax(model_logits)
model_predict = tf.argmax(model_predict_softmax, 1)
with tf.Session() as sess:
sess.run(init_op)
for i in range(938):
batch_xs, batch_ys = mnist.train.next_batch(64)
sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys})
# Export image model
export_dir = "./model/1"
print("Try to export the model in {}".format(export_dir))
tf.saved_model.simple_save(
sess,
export_dir,
inputs={"images": model_base64_placeholder},
outputs={
"predict": model_predict,
"probability": model_predict_softmax
})