當前位置: 首頁>>代碼示例>>Python>>正文


Python tensorflow.cumsum方法代碼示例

本文整理匯總了Python中tensorflow.cumsum方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.cumsum方法的具體用法?Python tensorflow.cumsum怎麽用?Python tensorflow.cumsum使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.cumsum方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: call

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import cumsum [as 別名]
def call(self, x):
        if (self.size == None) or (self.mode == 'sum'):
            self.size = int(x.shape[-1])

        position_j = 1. / \
            K.pow(10000., 2 * K.arange(self.size / 2, dtype='float32') / self.size)
        position_j = K.expand_dims(position_j, 0)

        position_i = tf.cumsum(K.ones_like(x[:, :, 0]), 1) - 1
        position_i = K.expand_dims(position_i, 2)
        position_ij = K.dot(position_i, position_j)
        outputs = K.concatenate(
            [K.cos(position_ij), K.sin(position_ij)], 2)

        if self.mode == 'sum':
            if self.scale:
                outputs = outputs * outputs ** 0.5
            return x + outputs
        elif self.mode == 'concat':
            return K.concatenate([outputs, x], 2) 
開發者ID:ShenDezhou,項目名稱:icme2019,代碼行數:22,代碼來源:sequence.py

示例2: _discount_reward_py_2d

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import cumsum [as 別名]
def _discount_reward_py_2d(reward, sequence_length=None,
                           discount=1., dtype=None):
    if sequence_length is not None:
        reward = mask_sequences(reward, sequence_length, dtype=dtype)

    dtype = dtype or reward.dtype

    if discount == 1.:
        disc_reward = np.cumsum(
            reward[:, ::-1], axis=1, dtype=dtype)[:, ::-1]
    else:
        disc_reward = np.copy(reward)
        for i in range(reward.shape[1]-2, -1, -1):
            disc_reward[:, i] += disc_reward[:, i+1] * discount

    return disc_reward 
開發者ID:qkaren,項目名稱:Counterfactual-StoryRW,代碼行數:18,代碼來源:rewards.py

示例3: _discount_reward_tensor_2d

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import cumsum [as 別名]
def _discount_reward_tensor_2d(reward, sequence_length=None,
                               discount=1., dtype=None):
    if sequence_length is not None:
        reward = mask_sequences(
            reward, sequence_length, dtype=dtype, tensor_rank=2)

    if discount == 1.:
        disc_reward = tf.cumsum(reward, axis=1, reverse=True)
    else:
        # [max_time, batch_size]
        rev_reward_T = tf.transpose(tf.reverse(reward, [1]), [1, 0])
        rev_reward_T_cum = tf.scan(
            fn=lambda acc, cur: cur + discount * acc,
            elems=rev_reward_T,
            initializer=tf.zeros_like(reward[:, 1]),
            back_prop=False)
        disc_reward = tf.reverse(
            tf.transpose(rev_reward_T_cum, [1, 0]), [1])

    return disc_reward 
開發者ID:qkaren,項目名稱:Counterfactual-StoryRW,代碼行數:22,代碼來源:rewards.py

示例4: take_top_p_logits

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import cumsum [as 別名]
def take_top_p_logits(logits, p):
    """Nucleus sampling"""
    batch, sequence, _ = logits.shape.as_list()
    sorted_logits = tf.sort(logits, direction='DESCENDING', axis=-1)
    cumulative_probs = tf.cumsum(tf.nn.softmax(sorted_logits, axis=-1), axis=-1)
    indices = tf.stack([
        tf.range(0, batch)[:, tf.newaxis],
        tf.range(0, sequence)[tf.newaxis, :],
        # number of indices to include
        tf.maximum(tf.reduce_sum(tf.cast(cumulative_probs <= p, tf.int32), axis=-1) - 1, 0),
    ], axis=-1)
    min_values = tf.gather_nd(sorted_logits, indices)
    return tf.where(
        logits < min_values,
        tf.ones_like(logits) * -1e10,
        logits,
    ) 
開發者ID:openai,項目名稱:lm-human-preferences,代碼行數:19,代碼來源:core.py

示例5: disjoint_signal_to_batch

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import cumsum [as 別名]
def disjoint_signal_to_batch(X, I):
    """
    Converts a disjoint graph signal to batch node by zero-padding.

    :param X: Tensor, node features of shape (nodes, features).
    :param I: Tensor, graph IDs of shape `(N, )`;
    :return batch: Tensor, batched node features of shape (batch, N_max, F)
    """
    I = tf.cast(I, tf.int32)
    num_nodes = tf.math.segment_sum(tf.ones_like(I), I)
    start_index = tf.cumsum(num_nodes, exclusive=True)
    n_graphs = tf.shape(num_nodes)[0]
    max_n_nodes = tf.reduce_max(num_nodes)
    batch_n_nodes = tf.shape(I)[0]
    feature_dim = tf.shape(X)[-1]

    index = tf.range(batch_n_nodes)
    index = (index - tf.gather(start_index, I)) + (I * max_n_nodes)
    dense = tf.zeros((n_graphs * max_n_nodes, feature_dim), dtype=X.dtype)
    dense = tf.tensor_scatter_nd_update(dense, index[..., None], X)

    batch = tf.reshape(dense, (n_graphs, max_n_nodes, feature_dim))

    return batch 
開發者ID:danielegrattarola,項目名稱:spektral,代碼行數:26,代碼來源:modes.py

示例6: _vectorised_get_cum_graph_size

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import cumsum [as 別名]
def _vectorised_get_cum_graph_size(nodes, graph_sizes):
    """
    Takes a list of node ids and graph sizes ordered by segment ID and returns the
    number of nodes contained in graphs with smaller segment ID.

    :param nodes: List of node ids of shape (nodes)
    :param graph_sizes: List of graph sizes (i.e. tf.math.segment_sum(tf.ones_like(I), I) where I are the
    segment IDs).
    :return: A list of shape (nodes) where each entry corresponds to the number of nodes contained in graphs
    with smaller segment ID for each node.
    """
    def get_cum_graph_size(node):
        cum_graph_sizes = tf.cumsum(graph_sizes, exclusive=True)
        indicator_if_smaller = tf.cast(node - cum_graph_sizes >= 0, tf.int32)
        graph_id = tf.reduce_sum(indicator_if_smaller) - 1
        return tf.cumsum(graph_sizes, exclusive=True)[graph_id]

    return tf.map_fn(get_cum_graph_size, nodes) 
開發者ID:danielegrattarola,項目名稱:spektral,代碼行數:20,代碼來源:modes.py

示例7: _distributional_to_value

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import cumsum [as 別名]
def _distributional_to_value(value_d, size, subscale, threshold):
  """Get a scalar value out of a value distribution in distributional RL."""
  half = size // 2
  value_range = (tf.to_float(tf.range(-half, half)) + 0.5) * subscale
  probs = tf.nn.softmax(value_d)

  if threshold == 0.0:
    return tf.reduce_sum(probs * value_range, axis=-1)

  # accumulated_probs[..., i] is the sum of probabilities in buckets upto i
  # so it is the probability that value <= i'th bucket value
  accumulated_probs = tf.cumsum(probs, axis=-1)
  # New probs are 0 on all lower buckets, until the threshold
  probs = tf.where(accumulated_probs < threshold, tf.zeros_like(probs), probs)
  probs /= tf.reduce_sum(probs, axis=-1, keepdims=True)  # Re-normalize.
  return tf.reduce_sum(probs * value_range, axis=-1) 
開發者ID:yyht,項目名稱:BERT,代碼行數:18,代碼來源:ppo.py

示例8: _compute_auxiliary_structure

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import cumsum [as 別名]
def _compute_auxiliary_structure(self, contents_and_mask):
    """Compute segment and position metadata."""
    contents = contents_and_mask[:, :self._num_sequences]
    start_mask = tf.cast(contents_and_mask[:, self._num_sequences:],
                         dtype=INDEX_DTYPE)

    segment = tf.cumsum(start_mask, axis=0)
    uniform_count = tf.ones_like(segment[:, 0])
    position = []
    for i in range(self._num_sequences):
      segment_slice = segment[:, i]
      counts = tf.math.segment_sum(uniform_count, segment[:, i])
      position.append(tf.range(self._packed_length) -  tf.cumsum(
          tf.gather(counts, segment_slice - 1) * start_mask[:, i]))
    position = tf.concat([i[:, tf.newaxis] for i in position], axis=1)

    # Correct for padding tokens.
    pad_mask = tf.cast(tf.not_equal(contents, 0), dtype=INDEX_DTYPE)
    segment *= pad_mask
    position *= pad_mask

    return segment, position 
開發者ID:yyht,項目名稱:BERT,代碼行數:24,代碼來源:generator_utils.py

示例9: slice_sentences

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import cumsum [as 別名]
def slice_sentences(document_features, picks, sentence_lengths):
    """Extract selected sentence spans from the document features.

    Arguments:
        document_features:  A `[batch, length, features]` representation
                            of the documents.
        picks:              Sentence to extract with shape
                            `[batch, selections]`.
        sentence_lengths:   Length of each sentence in the document with shape
                            `[batch, num_sentences]`.

    Returns extracted features for each selected sentence as a tensor with shape
        `[batch, selections, max_sentence_len, features]`
    """
    sentence_offsets = tf.cumsum(
        sentence_lengths, axis=1, exclusive=True)

    starts = ops.gather_from_rows(sentence_offsets, picks)
    lengths = ops.gather_from_rows(sentence_lengths, picks)
    sentence_embeddings = ops.slice_fragments(
        document_features, starts, lengths)
    return sentence_embeddings 
開發者ID:baidu-research,項目名稱:GloballyNormalizedReader,代碼行數:24,代碼來源:gnr.py

示例10: safe_cumprod

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import cumsum [as 別名]
def safe_cumprod(x: TensorLike, *args, **kwargs) -> tf.Tensor:
    """Computes cumprod of x in logspace using cumsum to avoid underflow.

    The cumprod function and its gradient can result in numerical instabilities
    when its argument has very small and/or zero values.  As long as the
    argument is all positive, we can instead compute the cumulative product as
    exp(cumsum(log(x))).  This function can be called identically to
    tf.cumprod.

    Args:
      x: Tensor to take the cumulative product of.
      *args: Passed on to cumsum; these are identical to those in cumprod.
      **kwargs: Passed on to cumsum; these are identical to those in cumprod.
    Returns:
      Cumulative product of x.
    """
    with tf.name_scope("SafeCumprod"):
        x = tf.convert_to_tensor(x, name="x")
        tiny = np.finfo(x.dtype.as_numpy_dtype).tiny
        return tf.exp(
            tf.cumsum(tf.math.log(tf.clip_by_value(x, tiny, 1)), *args, **kwargs)
        ) 
開發者ID:tensorflow,項目名稱:addons,代碼行數:24,代碼來源:attention_wrapper.py

示例11: weights_multi_problem_all

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import cumsum [as 別名]
def weights_multi_problem_all(labels, taskid=-1):
  """Assign weight 1.0 to only examples from the given task."""
  weights = tf.to_float(tf.not_equal(labels, 0))
  if taskid < 0:
    raise ValueError("Task ID must be non-negative.")

  past_taskid = tf.cumsum(tf.to_float(tf.equal(labels, taskid)), axis=1)
  # Additionally zero out the task id location
  past_taskid *= tf.to_float(tf.not_equal(labels, taskid))
  non_taskid = tf.to_float(labels)
  example_mask = tf.to_float(tf.not_equal(past_taskid * non_taskid, 0))
  example_mask = tf.reduce_sum(example_mask, axis=1)
  example_mask = tf.to_float(
      tf.greater(example_mask, tf.zeros_like(example_mask)))

  return weights * tf.expand_dims(example_mask, axis=-1) 
開發者ID:mlperf,項目名稱:training_results_v0.5,代碼行數:18,代碼來源:common_layers.py

示例12: shift_values

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import cumsum [as 別名]
def shift_values(values, discount, rollout, final_values=0.0):
  """Shift values up by some amount of time.

  Those values that shift from a value beyond the last value
  are calculated using final_values.

  """
  roll_range = tf.cumsum(tf.ones_like(values[:rollout, :]), 0,
                         exclusive=True, reverse=True)
  final_pad = tf.expand_dims(final_values, 0) * discount ** roll_range
  return tf.concat([discount ** rollout * values[rollout:, :],
                    final_pad], 0) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:14,代碼來源:objective.py

示例13: gather

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import cumsum [as 別名]
def gather(params, indices, dtype=tf.float32):
  """Version of tf.gather that works faster on tpu."""
  if not is_on_tpu():
    return tf.gather(params, indices)
  vocab_size = params.get_shape().as_list()[0]
  indices_flat = tf.reshape(indices, [-1])
  out = tf.matmul(tf.one_hot(indices_flat, vocab_size, dtype=dtype), params)
  out = reshape_like(out, tf.expand_dims(indices, -1))
  return out


# TODO(noam): remove this function after TPUs do cumsum faster. 
開發者ID:akzaidi,項目名稱:fine-lm,代碼行數:14,代碼來源:common_layers.py

示例14: cumsum

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import cumsum [as 別名]
def cumsum(x, axis=0, exclusive=False):
  """TPU hack for tf.cumsum.

  This is equivalent to tf.cumsum and is faster on TPU as of 04/2018 unless
  the axis dimension is very large.

  Args:
    x: a Tensor
    axis: an integer
    exclusive: a boolean

  Returns:
    Tensor of the same shape as x.
  """
  if not is_on_tpu():
    return tf.cumsum(x, axis=axis, exclusive=exclusive)
  x_shape = shape_list(x)
  rank = len(x_shape)
  length = x_shape[axis]
  my_range = tf.range(length)
  comparator = tf.less if exclusive else tf.less_equal
  mask = tf.cast(
      comparator(tf.expand_dims(my_range, 1), tf.expand_dims(my_range, 0)),
      x.dtype)
  ret = tf.tensordot(x, mask, axes=[[axis], [0]])
  if axis != rank - 1:
    ret = tf.transpose(
        ret,
        list(range(axis)) + [rank - 1] + list(range(axis, rank - 1)))
  return ret 
開發者ID:akzaidi,項目名稱:fine-lm,代碼行數:32,代碼來源:common_layers.py

示例15: weights_prepend_inputs_to_targets

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import cumsum [as 別名]
def weights_prepend_inputs_to_targets(labels):
  """Assign weight 1.0 to only the "targets" portion of the labels.

  Weight 1.0 is assigned to all nonzero labels past the first zero.
  See prepend_mode in common_hparams.py

  Args:
    labels: A Tensor of int32s.

  Returns:
    A Tensor of floats.
  """
  past_first_zero = tf.cumsum(tf.to_float(tf.equal(labels, 0)), axis=1)
  nonzero = tf.to_float(labels)
  return tf.to_float(tf.not_equal(past_first_zero * nonzero, 0)) 
開發者ID:akzaidi,項目名稱:fine-lm,代碼行數:17,代碼來源:common_layers.py


注:本文中的tensorflow.cumsum方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。