本文整理匯總了Python中tensorflow.cumprod方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.cumprod方法的具體用法?Python tensorflow.cumprod怎麽用?Python tensorflow.cumprod使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow
的用法示例。
在下文中一共展示了tensorflow.cumprod方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _discount_reward_tensor_1d
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import cumprod [as 別名]
def _discount_reward_tensor_1d(reward, sequence_length,
discount=1., dtype=None):
if sequence_length is None:
raise ValueError('sequence_length must not be `None` for 1D reward.')
batch_size = tf.shape(reward)[0]
max_seq_length = tf.reduce_max(sequence_length)
dtype = dtype or reward.dtype
if discount == 1.:
dmat = tf.ones(
tf.concat([[batch_size], [max_seq_length]], 0), dtype=dtype)
else:
mask = tf.sequence_mask(sequence_length, dtype=dtype)
mask = tf.concat([mask[:, 1:], tf.zeros_like(mask[:, -1:])], axis=1)
# Make each row = [discount, ..., discount, 1, ..., 1]
dmat = mask * discount + (1 - mask)
dmat = tf.cumprod(dmat, axis=1, reverse=True)
disc_reward = dmat * tf.expand_dims(reward, -1)
disc_reward = mask_sequences(
disc_reward, sequence_length, dtype=dtype, tensor_rank=2)
return disc_reward
示例2: make_bert
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import cumprod [as 別名]
def make_bert(input_ids, word_end_mask):
# We can derive input_mask from either input_ids or word_end_mask
input_mask = (1 - tf.cumprod(1 - word_end_mask, axis=-1, reverse=True))
token_type_ids = tf.zeros_like(input_ids)
bert_model = make_bert_instance(input_ids, input_mask, token_type_ids)
bert_features = bert_model.get_sequence_output()
bert_features_packed = tf.gather(
tf.reshape(bert_features, [-1, int(bert_features.shape[-1])]),
tf.to_int32(tf.where(tf.reshape(word_end_mask, (-1,))))[:,0])
projected_annotations = tf.matmul(
bert_features_packed,
tf.constant(sd['project_bert.weight'].numpy().transpose()))
# input_mask is over subwords, whereas valid_mask is over words
sentence_lengths = tf.reduce_sum(word_end_mask, -1)
valid_mask = (tf.range(tf.reduce_max(sentence_lengths))[None,:] < sentence_lengths[:, None])
dim_padded = tf.shape(valid_mask)[:2]
mask_flat = tf.reshape(valid_mask, (-1,))
dim_flat = tf.shape(mask_flat)[:1]
nonpad_ids = tf.to_int32(tf.where(mask_flat)[:,0])
return projected_annotations, nonpad_ids, dim_flat, dim_padded, valid_mask, sentence_lengths
#%%
示例3: unpool
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import cumprod [as 別名]
def unpool(pool, ind, shape, ksize=[1, 2, 2, 1], scope=None):
with tf.name_scope(scope):
input_shape = tf.shape(pool)
output_shape = [input_shape[0], input_shape[1] * ksize[1], input_shape[2] * ksize[2], input_shape[3]]
flat_input_size = tf.cumprod(input_shape)[-1]
flat_output_shape = tf.stack([output_shape[0], output_shape[1] * output_shape[2] * output_shape[3]])
pool_ = tf.reshape(pool, tf.stack([flat_input_size]))
batch_range = tf.reshape(tf.range(tf.cast(output_shape[0], tf.int64), dtype=ind.dtype),
shape=tf.stack([input_shape[0], 1, 1, 1]))
b = tf.ones_like(ind) * batch_range
b = tf.reshape(b, tf.stack([flat_input_size, 1]))
ind_ = tf.reshape(ind, tf.stack([flat_input_size, 1]))
ind_ = tf.concat([b, ind_], 1)
ret = tf.scatter_nd(ind_, pool_, shape=tf.cast(flat_output_shape, tf.int64))
ret = tf.reshape(ret, tf.stack(output_shape))
ret = tf.reshape(ret, shape=shape)
return ret
示例4: crf_loss
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import cumprod [as 別名]
def crf_loss(y, y_, transitions, nums_tags, batch_size):
tag_scores = y
nums_steps = len(tf.unstack(tag_scores, axis=1))
masks = tf.cast(tf.sign(y_), dtype=tf.float32)
lengths = tf.reduce_sum(tf.sign(y_), reduction_indices=1)
tag_ids = y_
b_id = tf.stack([[nums_tags]] * batch_size)
padded_tag_ids = tf.concat([b_id, tag_ids], axis=1)
idx_tag_ids = tf.stack([tf.slice(padded_tag_ids, [0, i], [-1, 2]) for i in range(nums_steps)], axis=1)
tag_ids = tf.contrib.layers.one_hot_encoding(tag_ids, nums_tags)
point_score = tf.reduce_sum(tag_scores * tag_ids, reduction_indices=2)
point_score *= masks
#Save for future
trans_sh = tf.stack(transitions.get_shape())
trans_sh = tf.cumprod(trans_sh, exclusive=True, reverse=True)
flat_tag_ids = tf.reduce_sum(trans_sh * idx_tag_ids, reduction_indices=2)
trans_score = tf.gather(tf.reshape(transitions, [-1]), flat_tag_ids)
##
extend_mask = masks
trans_score *= extend_mask
target_path_score = tf.reduce_sum(point_score) + tf.reduce_sum(trans_score)
total_path_score, _, _ = Forward(tag_scores, transitions, nums_tags, lengths, batch_size)()
return - (target_path_score - total_path_score)
示例5: testInvalidAxis
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import cumprod [as 別名]
def testInvalidAxis(self):
x = np.arange(0, 10).reshape([2, 5]).astype(np.float32)
input_tensor = tf.convert_to_tensor(x)
with self.test_session(use_gpu=True):
with self.assertRaisesWithPredicateMatch(
tf.errors.InvalidArgumentError,
lambda e: "Expected scan axis in the range [-2, 2)" in str(e)):
tf.cumprod(input_tensor, -3).eval()
with self.assertRaisesWithPredicateMatch(
tf.errors.InvalidArgumentError,
lambda e: "Expected scan axis in the range [-2, 2)" in str(e)):
tf.cumprod(input_tensor, 2).eval()
with self.assertRaisesWithPredicateMatch(
tf.errors.InvalidArgumentError,
lambda e: "axis must be a scalar" in str(e)):
tf.cumprod(input_tensor, [0]).eval()
示例6: _update_alloc_and_usage_vectors
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import cumprod [as 別名]
def _update_alloc_and_usage_vectors(self, pre_write_weightings, pre_read_weightings, pre_usage_vector, free_gates):
retention_vector = tf.reduce_prod(1 - free_gates * pre_read_weightings, axis=1, keepdims=False,
name='retention_prod')
usage_vector = (
pre_usage_vector + pre_write_weightings - pre_usage_vector * pre_write_weightings) * retention_vector
sorted_usage, free_list = tf.nn.top_k(-1 * usage_vector, self.h_N)
sorted_usage = -1 * sorted_usage
cumprod_sorted_usage = tf.cumprod(sorted_usage, axis=1, exclusive=True)
corrected_free_list = free_list + self.const_batch_memory_range
cumprod_sorted_usage_re = [tf.reshape(cumprod_sorted_usage, [-1, ]), ]
corrected_free_list_re = [tf.reshape(corrected_free_list, [-1]), ]
stitched_usage = tf.dynamic_stitch(corrected_free_list_re, cumprod_sorted_usage_re, name=None)
stitched_usage = tf.reshape(stitched_usage, [self.h_B, self.h_N])
alloc_weighting = (1 - usage_vector) * stitched_usage
return alloc_weighting, usage_vector
示例7: _cumprod
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import cumprod [as 別名]
def _cumprod(tensor, axis=0):
"""A custom version of cumprod to prevent NaN gradients when there are zeros in `tensor`
as reported here: https://github.com/tensorflow/tensorflow/issues/3862
:param tensor: tf.Tensor
:return: tf.Tensor
"""
transpose_permutation = None
n_dim = len(tensor.get_shape())
if n_dim > 1 and axis != 0:
if axis < 0:
axis += n_dim
transpose_permutation = np.arange(n_dim)
transpose_permutation[-1], transpose_permutation[0] = 0, axis
tensor = tf.transpose(tensor, transpose_permutation)
def prod(acc, x):
return acc * x
prob = tf.scan(prod, tensor)
tensor = tf.transpose(prob, transpose_permutation)
return tensor
示例8: calculate_allocation_weighting
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import cumprod [as 別名]
def calculate_allocation_weighting(self, usage_vector):
"""
:param: usage vector: tensor of shape [batch_size, memory_size]
:return: allocation tensor of shape [batch_size, memory_size]
"""
usage_vector = Memory.epsilon + (1 - Memory.epsilon) * usage_vector
# We're sorting the "-self.usage_vector" because top_k returns highest values and we need the lowest
highest_usage, inverse_indices = tf.nn.top_k(-usage_vector, k=self.memory_size)
lowest_usage = -highest_usage
allocation_scrambled = (1 - lowest_usage) * tf.cumprod(lowest_usage, axis=1, exclusive=True)
# allocation is not in the correct order. alloation[i] contains the sorted[i] value
# reversing the already inversed indices for each batch
indices = tf.stack([tf.invert_permutation(batch_indices) for batch_indices in tf.unstack(inverse_indices)])
allocation = tf.stack([tf.gather(mem, ind)
for mem, ind in
zip(tf.unstack(allocation_scrambled), tf.unstack(indices))])
return allocation
示例9: reduce_prod
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import cumprod [as 別名]
def reduce_prod(x, axis, name=None):
"""Efficient reduce product over axis.
Uses tf.cumprod and tf.gather_nd as a workaround to the poor performance of calculating tf.reduce_prod's gradient on CPU.
"""
with tf.name_scope(name, 'util_reduce_prod', values=[x]):
cp = tf.cumprod(x, axis, reverse=True)
size = tf.shape(cp)[0]
idx1 = tf.range(tf.cast(size, tf.float32), dtype=tf.float32)
idx2 = tf.zeros([size], tf.float32)
indices = tf.stack([idx1, idx2], 1)
return tf.gather_nd(cp, tf.cast(indices, tf.int32))
示例10: _allocation
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import cumprod [as 別名]
def _allocation(self, usage):
r"""Computes allocation by sorting `usage`.
This corresponds to the value a = a_t[\phi_t[j]] in the paper.
Args:
usage: tensor of shape `[batch_size, memory_size]` indicating current
memory usage. This is equal to u_t in the paper when we only have one
write head, but for multiple write heads, one should update the usage
while iterating through the write heads to take into account the
allocation returned by this function.
Returns:
Tensor of shape `[batch_size, memory_size]` corresponding to allocation.
"""
with tf.name_scope('allocation'):
# Ensure values are not too small prior to cumprod.
usage = _EPSILON + (1 - _EPSILON) * usage
nonusage = 1 - usage
sorted_nonusage, indices = tf.nn.top_k(
nonusage, k=self._memory_size, name='sort')
sorted_usage = 1 - sorted_nonusage
prod_sorted_usage = tf.cumprod(sorted_usage, axis=1, exclusive=True)
sorted_allocation = sorted_nonusage * prod_sorted_usage
inverse_indices = util.batch_invert_permutation(indices)
# This final line "unsorts" sorted_allocation, so that the indexing
# corresponds to the original indexing of `usage`.
return util.batch_gather(sorted_allocation, inverse_indices)
示例11: _discount_reward_py_1d
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import cumprod [as 別名]
def _discount_reward_py_1d(reward, sequence_length, discount=1., dtype=None):
if sequence_length is None:
raise ValueError('sequence_length must not be `None` for 1D reward.')
reward = np.array(reward)
sequence_length = np.array(sequence_length)
batch_size = reward.shape[0]
max_seq_length = np.max(sequence_length)
dtype = dtype or reward.dtype
if discount == 1.:
dmat = np.ones([batch_size, max_seq_length], dtype=dtype)
else:
steps = np.tile(np.arange(max_seq_length), [batch_size, 1])
mask = np.asarray(steps < (sequence_length-1)[:, None], dtype=dtype)
# Make each row = [discount, ..., discount, 1, ..., 1]
dmat = mask * discount + (1 - mask)
dmat = np.cumprod(dmat[:, ::-1], axis=1)[:, ::-1]
disc_reward = dmat * reward[:, None]
disc_reward = mask_sequences(disc_reward, sequence_length, dtype=dtype)
#mask = np.asarray(steps < sequence_length[:, None], dtype=dtype)
#disc_reward = mask * disc_reward
return disc_reward
示例12: prefix_accuracy
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import cumprod [as 別名]
def prefix_accuracy(predictions,
labels,
weights_fn=common_layers.weights_nonzero):
"""Average # of correct tokens at start of sequences, ignoring padding 0s.
See section 4.3 of Learning to Transduce with Unbounded Memory,
Grefenstette et al., 2015.
Args:
predictions: Tensor of shape [`batch_size`, `length`, 1, `num_classes`] and
type tf.float32 representing the logits, 0-padded.
labels: Tensor of shape [`batch_size`, `length`, 1, 1] and type tf.int32
representing the labels of same length as logits and 0-padded.
weights_fn: ignored. The weights returned are the total length of the ground
truth labels, excluding 0-paddings.
Returns:
(prefix accuracy, 1.0)
Raises:
ValueError: if weights_fn is not common_layers.weights_nonzero.
"""
if weights_fn is not common_layers.weights_nonzero:
raise ValueError("Only weights_nonzero can be used for this metric.")
predictions = tf.to_int32(tf.squeeze(tf.argmax(predictions, axis=-1), axis=2))
labels = tf.squeeze(labels, axis=(2, 3))
seq_len = tf.reduce_sum(
tf.cast(tf.not_equal(labels, tf.constant(0)), dtype=tf.float32), axis=1)
matching_elements = tf.equal(labels, predictions)
prefix_len = tf.reduce_sum(
tf.cumprod(tf.cast(matching_elements, tf.float32), axis=1), axis=1)
return tf.reduce_mean(prefix_len / seq_len), tf.constant(1.0)
示例13: cumprod
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import cumprod [as 別名]
def cumprod(x, axis=0):
"""Cumulative product of the values in a tensor, alongside the specified axis.
# Arguments
x: A tensor or variable.
axis: An integer, the axis to compute the product.
# Returns
A tensor of the cumulative product of values of `x` along `axis`.
"""
return tf.cumprod(x, axis=axis)
示例14: handle_options
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import cumprod [as 別名]
def handle_options(func, x, axis, exclusive, reverse):
"""Adds tf options to numpy scan ops."""
length = len(x.shape)
if axis < 0:
axis = length + axis
if reverse:
x = numpy_reverse(x, axis)
if exclusive:
ix_head = [slice(0, 1) if i == axis else slice(None)
for i in range(length)]
ix_init = [slice(0, -1) if i == axis else slice(None)
for i in range(length)]
if func == np.cumsum:
init = np.zeros_like(x[ix_head])
elif func == np.cumprod:
init = np.ones_like(x[ix_head])
else:
raise ValueError("Unknown scan function.")
x = np.concatenate([init, func(x[ix_init], axis)], axis=axis)
else:
x = func(x, axis=axis)
if reverse:
x = numpy_reverse(x, axis)
return x
示例15: _compare
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import cumprod [as 別名]
def _compare(self, x, axis, exclusive, reverse):
np_out = handle_options(np.cumprod, x, axis, exclusive, reverse)
with self.test_session(use_gpu=True):
tf_out = tf.cumprod(x, axis, exclusive, reverse).eval()
self.assertAllClose(np_out, tf_out)