當前位置: 首頁>>代碼示例>>Python>>正文


Python tensorflow.cosh方法代碼示例

本文整理匯總了Python中tensorflow.cosh方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.cosh方法的具體用法?Python tensorflow.cosh怎麽用?Python tensorflow.cosh使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.cosh方法的10個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __init__

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import cosh [as 別名]
def __init__(self, config):
        self.config = config
        self.n_steps = 10
        self.n_input, self.n_hidden =  4, 2
        self.state = tf.Variable(tf.random_normal(shape=[1, 4]))
        self.lstm = tf.contrib.rnn.BasicLSTMCell(self.n_hidden, forget_bias=1.0, state_is_tuple=False)
        self.Wc, self.bc = self.init_controller_vars()
        self.Wv, self.bv = self.init_value_vars()

        # Other functions used in the paper
        # self.full_list_unary = {1:lambda x:x ,2:lambda x: -x, 3: tf.abs, 4:lambda x : tf.pow(x,2),5:lambda x : tf.pow(x,3),
        #   6:tf.sqrt,7:lambda x: tf.Variable(tf.truncated_normal([1], stddev=0.08))*x,
        #   8:lambda x : x + tf.Variable(tf.truncated_normal([1], stddev=0.08)),9:lambda x: tf.log(tf.abs(x)+10e-8),
        #   10:tf.exp,11:tf.sin,12:tf.sinh,13:tf.cosh,14:tf.tanh,15:tf.asinh,16:tf.atan,17:lambda x: tf.sin(x)/x,
        #   18:lambda x : tf.maximum(x,0),19:lambda x : tf.minimum(x,0),20:tf.sigmoid,21:lambda x:tf.log(1+tf.exp(x)),
        #   22:lambda x:tf.exp(-tf.pow(x,2)),23:tf.erf,24:lambda x: tf.Variable(tf.truncated_normal([1], stddev=0.08))}
        #
        # self.full_list_binary = {1:lambda x,y: x+y,2:lambda x,y:x*y,3:lambda x,y:x-y,4:lambda x,y:x/(y+10e-8),
        # 5:lambda x,y:tf.maximum(x,y),6:lambda x,y: tf.sigmoid(x)*y,7:lambda x,y:tf.exp(-tf.Variable(tf.truncated_normal([1], stddev=0.08))*tf.pow(x-y,2)),
        # 8:lambda x,y:tf.exp(-tf.Variable(tf.truncated_normal([1], stddev=0.08))*tf.abs(x-y)),
        # 9:lambda x,y: tf.Variable(tf.truncated_normal([1], stddev=0.08))*x + (1-tf.Variable(tf.truncated_normal([1], stddev=0.08)))*y}
        #
        # self.unary = {1:lambda x:x ,2:lambda x: -x, 3: lambda x: tf.maximum(x,0), 4:lambda x : tf.pow(x,2),5:tf.tanh}
        # binary = {1:lambda x,y: x+y,2:lambda x,y:x*y,3:lambda x,y:x-y,4:lambda x,y:tf.maximum(x,y),5:lambda x,y: tf.sigmoid(x)*y}
        # inputs = {1:lambda x:x , 2:lambda x:0, 3: lambda x:3.14159265,4: lambda x : 1, 5: lambda x: 1.61803399} 
開發者ID:Neoanarika,項目名稱:Searching-for-activation-functions,代碼行數:27,代碼來源:rnn_controller.py

示例2: test_forward_unary

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import cosh [as 別名]
def test_forward_unary():
    def _test_forward_unary(op, a_min=1, a_max=5, dtype=np.float32):
        """test unary operators"""
        np_data = np.random.uniform(a_min, a_max, size=(2, 3, 5)).astype(dtype)
        tf.reset_default_graph()
        with tf.Graph().as_default():
            in_data = tf.placeholder(dtype, (2, 3, 5), name="in_data")
            out = op(in_data)
            compare_tf_with_tvm([np_data], ['in_data:0'], out.name)

    _test_forward_unary(tf.acos, -1, 1)
    _test_forward_unary(tf.asin, -1, 1)
    _test_forward_unary(tf.atanh, -1, 1)
    _test_forward_unary(tf.sinh)
    _test_forward_unary(tf.cosh)
    _test_forward_unary(tf.acosh)
    _test_forward_unary(tf.asinh)
    _test_forward_unary(tf.atan)
    _test_forward_unary(tf.sin)
    _test_forward_unary(tf.cos)
    _test_forward_unary(tf.tan)
    _test_forward_unary(tf.tanh)
    _test_forward_unary(tf.erf)
    _test_forward_unary(tf.log)
    _test_forward_unary(tf.log1p) 
開發者ID:apache,項目名稱:incubator-tvm,代碼行數:27,代碼來源:test_forward.py

示例3: numpy_cosh

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import cosh [as 別名]
def numpy_cosh(a):
  return np.cosh(a) 
開發者ID:google,項目名稱:tangent,代碼行數:4,代碼來源:functions.py

示例4: tfe_cosh

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import cosh [as 別名]
def tfe_cosh(t):
  return tf.cosh(t) 
開發者ID:google,項目名稱:tangent,代碼行數:4,代碼來源:functions.py

示例5: dtfsinh

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import cosh [as 別名]
def dtfsinh(y, x):
  d[x] = d[y] * tf.cosh(x) 
開發者ID:google,項目名稱:tangent,代碼行數:4,代碼來源:tf_extensions.py

示例6: ttftanh

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import cosh [as 別名]
def ttftanh(y, x):
  cx = tf.cosh(x)
  d[y] = d[x] / (cx * cx) 
開發者ID:google,項目名稱:tangent,代碼行數:5,代碼來源:tf_extensions.py

示例7: ttfsinh

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import cosh [as 別名]
def ttfsinh(y, x):
  d[y] = d[x] * tf.cosh(x) 
開發者ID:google,項目名稱:tangent,代碼行數:4,代碼來源:tf_extensions.py

示例8: swish_sign

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import cosh [as 別名]
def swish_sign(x: tf.Tensor, beta: float = 5.0) -> tf.Tensor:
    @tf.custom_gradient
    def _call(x):
        def grad(dy):
            b_x = beta * x
            return dy * beta * (2 - b_x * tf.tanh(b_x * 0.5)) / (1 + tf.cosh(b_x))

        return math.sign(x), grad

    return _call(x) 
開發者ID:larq,項目名稱:larq,代碼行數:12,代碼來源:quantizers.py

示例9: squeezed_vacuum_vector

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import cosh [as 別名]
def squeezed_vacuum_vector(r, theta, cutoff, batched=False, eps=1e-32):
    """returns the ket representing a single mode squeezed vacuum state"""
    if batched:
        batch_size = r.shape[0]
    r = tf.cast(r, def_type)
    theta = tf.cast(theta, def_type)
    c1 = tf.cast(
        tf.stack(
            [
                tf.sqrt(1 / tf.cosh(r)) * np.sqrt(factorial(k)) / factorial(k / 2.0)
                for k in range(0, cutoff, 2)
            ],
            axis=-1,
        ),
        def_type,
    )
    c2 = tf.stack(
        [
            (-0.5 * tf.exp(1j * theta) * tf.cast(tf.tanh(r + eps), def_type)) ** (k / 2.0)
            for k in range(0, cutoff, 2)
        ],
        axis=-1,
    )
    even_coeffs = c1 * c2
    ind = [(k,) for k in np.arange(0, cutoff, 2)]
    shape = [cutoff]
    if batched:
        ind = batchify_indices(ind, batch_size)
        shape = [batch_size] + shape
    output = tf.scatter_nd(ind, tf.reshape(even_coeffs, [-1]), shape)
    return output 
開發者ID:XanaduAI,項目名稱:strawberryfields,代碼行數:33,代碼來源:ops.py

示例10: displaced_squeezed

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import cosh [as 別名]
def displaced_squeezed(r_d, phi_d, r_s, phi_s, cutoff, pure=True, batched=False, eps=1e-12):
    """creates a single mode input displaced squeezed state"""
    alpha = tf.cast(r_d, def_type) * tf.exp(1j * tf.cast(phi_d, def_type))
    r_s = (
        tf.cast(r_s, def_type) + eps
    )  # to prevent nans if r==0, we add an epsilon (default is miniscule)
    phi_s = tf.cast(phi_s, def_type)

    phase = tf.exp(1j * phi_s)
    sinh = tf.sinh(r_s)
    cosh = tf.cosh(r_s)
    tanh = tf.tanh(r_s)

    # create Hermite polynomials
    gamma = alpha * cosh + tf.math.conj(alpha) * phase * sinh
    hermite_arg = gamma / tf.sqrt(phase * tf.sinh(2 * r_s))

    prefactor = tf.expand_dims(
        tf.exp(-0.5 * alpha * tf.math.conj(alpha) - 0.5 * tf.math.conj(alpha) ** 2 * phase * tanh),
        -1,
    )
    coeff = tf.stack(
        [
            _numer_safe_power(0.5 * phase * tanh, n / 2.0) / tf.sqrt(factorial(n) * cosh)
            for n in range(cutoff)
        ],
        axis=-1,
    )
    hermite_terms = tf.stack([tf.cast(H(n, hermite_arg), def_type) for n in range(cutoff)], axis=-1)
    squeezed_coh = prefactor * coeff * hermite_terms

    if not pure:
        squeezed_coh = mixed(squeezed_coh, batched)
    return squeezed_coh 
開發者ID:XanaduAI,項目名稱:strawberryfields,代碼行數:36,代碼來源:ops.py


注:本文中的tensorflow.cosh方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。