當前位置: 首頁>>代碼示例>>Python>>正文


Python rewriter_config_pb2.RewriterConfig方法代碼示例

本文整理匯總了Python中tensorflow.core.protobuf.rewriter_config_pb2.RewriterConfig方法的典型用法代碼示例。如果您正苦於以下問題:Python rewriter_config_pb2.RewriterConfig方法的具體用法?Python rewriter_config_pb2.RewriterConfig怎麽用?Python rewriter_config_pb2.RewriterConfig使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.core.protobuf.rewriter_config_pb2的用法示例。


在下文中一共展示了rewriter_config_pb2.RewriterConfig方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: create_session_config

# 需要導入模塊: from tensorflow.core.protobuf import rewriter_config_pb2 [as 別名]
# 或者: from tensorflow.core.protobuf.rewriter_config_pb2 import RewriterConfig [as 別名]
def create_session_config(log_device_placement=False,
                          enable_graph_rewriter=False,
                          gpu_mem_fraction=0.95,
                          use_tpu=False,
                          inter_op_parallelism_threads=0,
                          intra_op_parallelism_threads=0):
  """The TensorFlow Session config to use."""
  if use_tpu:
    graph_options = tf.GraphOptions()
  else:
    if enable_graph_rewriter:
      rewrite_options = rewriter_config_pb2.RewriterConfig()
      rewrite_options.layout_optimizer = rewriter_config_pb2.RewriterConfig.ON
      graph_options = tf.GraphOptions(rewrite_options=rewrite_options)
    else:
      graph_options = tf.GraphOptions(
          optimizer_options=tf.OptimizerOptions(
              opt_level=tf.OptimizerOptions.L1, do_function_inlining=False))

  gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=gpu_mem_fraction)

  config = tf.ConfigProto(
      allow_soft_placement=True,
      graph_options=graph_options,
      gpu_options=gpu_options,
      log_device_placement=log_device_placement,
      inter_op_parallelism_threads=inter_op_parallelism_threads,
      intra_op_parallelism_threads=intra_op_parallelism_threads)
  return config 
開發者ID:akzaidi,項目名稱:fine-lm,代碼行數:31,代碼來源:trainer_lib.py

示例2: print_info

# 需要導入模塊: from tensorflow.core.protobuf import rewriter_config_pb2 [as 別名]
# 或者: from tensorflow.core.protobuf.rewriter_config_pb2 import RewriterConfig [as 別名]
def print_info(self):
    """Print basic information."""
    benchmark_info = self._get_params_info()
    log_fn('Model:       %s' % self.model.get_model_name())
    log_fn('Dataset:     %s' % benchmark_info['dataset_name'])
    log_fn('Mode:        %s' % self.mode)
    log_fn('SingleSess:  %s' % benchmark_info['single_session'])
    log_fn('Batch size:  %s global' % (self.batch_size * self.num_workers))
    log_fn('             %s per device' % (self.batch_size //
                                           len(self.raw_devices)))
    if self.batch_group_size > 1:
      log_fn('             %d batches per prepocessing group' %
             self.batch_group_size)
    log_fn('Num batches: %d' % self.num_batches)
    log_fn('Num epochs:  %.2f' % self.num_epochs)
    log_fn('Devices:     %s' % benchmark_info['device_list'])
    log_fn('NUMA bind:   %s' % self.params.use_numa_affinity)
    log_fn('Data format: %s' % self.params.data_format)
    if self.rewriter_config:
      log_fn('RewriterConfig: %s' % self.rewriter_config)
    log_fn('Optimizer:   %s' % self.params.optimizer)
    log_fn('Variables:   %s' % self.params.variable_update)
    if (self.params.variable_update == 'replicated' or
        self.params.variable_update == 'distributed_all_reduce'
        or self.params.variable_update == 'collective_all_reduce'):
      log_fn('AllReduce:   %s' % self.params.all_reduce_spec)
    if self.job_name:
      log_fn('Sync:        %s' % self.params.cross_replica_sync)
    if self.params.staged_vars:
      log_fn('Staged vars: %s' % self.params.staged_vars)
    if self.params.variable_update == 'horovod' and self.params.horovod_device:
      log_fn('Horovod on:  %s' % self.params.horovod_device)
    log_fn('==========') 
開發者ID:tensorflow,項目名稱:benchmarks,代碼行數:35,代碼來源:benchmark_cnn.py

示例3: create_session_config

# 需要導入模塊: from tensorflow.core.protobuf import rewriter_config_pb2 [as 別名]
# 或者: from tensorflow.core.protobuf.rewriter_config_pb2 import RewriterConfig [as 別名]
def create_session_config(log_device_placement=False,
                          enable_graph_rewriter=False,
                          gpu_mem_fraction=0.95,
                          use_tpu=False,
                          xla_jit_level=tf.OptimizerOptions.OFF,
                          inter_op_parallelism_threads=0,
                          intra_op_parallelism_threads=0):
  """The TensorFlow Session config to use."""
  if use_tpu:
    graph_options = tf.GraphOptions()
  else:
    if enable_graph_rewriter:
      rewrite_options = rewriter_config_pb2.RewriterConfig()
      rewrite_options.layout_optimizer = rewriter_config_pb2.RewriterConfig.ON
      graph_options = tf.GraphOptions(rewrite_options=rewrite_options)
    else:
      graph_options = tf.GraphOptions(
          optimizer_options=tf.OptimizerOptions(
              opt_level=tf.OptimizerOptions.L1,
              do_function_inlining=False,
              global_jit_level=xla_jit_level))

  gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=gpu_mem_fraction)

  config = tf.ConfigProto(
      allow_soft_placement=True,
      graph_options=graph_options,
      gpu_options=gpu_options,
      log_device_placement=log_device_placement,
      inter_op_parallelism_threads=inter_op_parallelism_threads,
      intra_op_parallelism_threads=intra_op_parallelism_threads,
      isolate_session_state=True)
  return config 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:35,代碼來源:trainer_lib.py

示例4: auto_parallel

# 需要導入模塊: from tensorflow.core.protobuf import rewriter_config_pb2 [as 別名]
# 或者: from tensorflow.core.protobuf.rewriter_config_pb2 import RewriterConfig [as 別名]
def auto_parallel(metagraph, model):
  from tensorflow.python.grappler import tf_optimizer
  rewriter_config = rewriter_config_pb2.RewriterConfig()
  rewriter_config.optimizers.append("autoparallel")
  rewriter_config.auto_parallel.enable = True
  rewriter_config.auto_parallel.num_replicas = FLAGS.num_gpus
  optimized_graph = tf_optimizer.OptimizeGraph(rewriter_config, metagraph)
  metagraph.graph_def.CopyFrom(optimized_graph)
  UpdateCollection(metagraph, model) 
開發者ID:rky0930,項目名稱:yolo_v2,代碼行數:11,代碼來源:util.py

示例5: __init__

# 需要導入模塊: from tensorflow.core.protobuf import rewriter_config_pb2 [as 別名]
# 或者: from tensorflow.core.protobuf.rewriter_config_pb2 import RewriterConfig [as 別名]
def __init__(self, iterations):
    tf.logging.info("TrainLowLevelRunner: constructor")

    self.feature_structure = {}
    self.loss = None
    self.infeed_queue = []
    self.enqueue_ops = []
    self.dataset_initializer = []
    self.iterations = iterations
    self.num_hosts = FLAGS.num_shards // FLAGS.num_shards_per_host
    self.scaffold_fn = None
    # Having two separate sessions and graphs to make the initialization faster.
    self.input_sess = None
    self.train_sess = None
    self.input_graph = tf.Graph()
    self.train_graph = None
    self.tpu_cluster_resolver = tf.contrib.cluster_resolver.TPUClusterResolver(
        FLAGS.tpu_name, zone=FLAGS.tpu_zone, project=FLAGS.gcp_project)
    # Disable grappler for better performance.
    self.session_config = tf.ConfigProto(
        allow_soft_placement=True,
        graph_options=tf.GraphOptions(
            rewrite_options=rewriter_config_pb2.RewriterConfig(
                disable_meta_optimizer=True)),
        isolate_session_state=True)
    cluster_spec = self.tpu_cluster_resolver.cluster_spec()
    if cluster_spec:
      self.session_config.cluster_def.CopyFrom(cluster_spec.as_cluster_def())
    self.tpu_init = [tpu.initialize_system()]
    self.tpu_shutdown = tpu.shutdown_system()
    self.init_sess = tf.Session(self.tpu_cluster_resolver.get_master(),
                                config=self.session_config)
    self.init_sess.run(self.tpu_init)
    self.queue = Queue.Queue() 
開發者ID:mlperf,項目名稱:training_results_v0.5,代碼行數:36,代碼來源:train_low_level_runner.py

示例6: __init__

# 需要導入模塊: from tensorflow.core.protobuf import rewriter_config_pb2 [as 別名]
# 或者: from tensorflow.core.protobuf.rewriter_config_pb2 import RewriterConfig [as 別名]
def __init__(self, iterations, train_steps):
    tf.logging.info("TrainRunner: constructor")
    self.feature_structure = {}
    self.loss = None
    self.infeed_queue = []
    self.enqueue_ops = []
    self.dataset_initializer = []
    self.iterations = iterations
    self.sess = None
    self.input_sess = None
    self.infeed_thread = None
    if train_steps % iterations != 0:
      train_steps = iterations * int(math.ceil(train_steps / iterations))
    self.train_steps = train_steps
    self.input_graph = tf.Graph()
    tpu_init = [tpu.initialize_system()]
    self.tpu_shutdown = tpu.shutdown_system()
    self.cluster_resolver = tf.contrib.cluster_resolver.TPUClusterResolver(
        FLAGS.tpu, zone=FLAGS.tpu_zone, project=FLAGS.gcp_project)
    self.config = tf.ConfigProto(operation_timeout_in_ms=600 * 60 * 1000,
                                 graph_options=tf.GraphOptions(
                                     rewrite_options=rewriter_config_pb2.RewriterConfig(
                                         disable_meta_optimizer=True)),
                                 isolate_session_state=True)
    cluster_spec = self.cluster_resolver.cluster_spec()
    if cluster_spec:
      self.config.cluster_def.CopyFrom(cluster_spec.as_cluster_def())
    self.init_sess = tf.Session(self.cluster_resolver.get_master(), config=self.config)
    self.init_sess.run(tpu_init) 
開發者ID:mlperf,項目名稱:training_results_v0.5,代碼行數:31,代碼來源:train_runner.py

示例7: create_session_config

# 需要導入模塊: from tensorflow.core.protobuf import rewriter_config_pb2 [as 別名]
# 或者: from tensorflow.core.protobuf.rewriter_config_pb2 import RewriterConfig [as 別名]
def create_session_config(log_device_placement=False,
                          enable_graph_rewriter=False,
                          gpu_mem_fraction=0.95,
                          use_tpu=False,
                          xla_jit_level=tf.OptimizerOptions.OFF,
                          inter_op_parallelism_threads=0,
                          intra_op_parallelism_threads=0):
  """The TensorFlow Session config to use."""
  if use_tpu:
    graph_options = tf.GraphOptions()
  else:
    if enable_graph_rewriter:
      rewrite_options = rewriter_config_pb2.RewriterConfig()
      rewrite_options.layout_optimizer = rewriter_config_pb2.RewriterConfig.ON
      graph_options = tf.GraphOptions(rewrite_options=rewrite_options)
    else:
      graph_options = tf.GraphOptions(
          optimizer_options=tf.OptimizerOptions(
              opt_level=tf.OptimizerOptions.L1,
              do_function_inlining=False,
              global_jit_level=xla_jit_level))

  gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=gpu_mem_fraction)

  config = tf.ConfigProto(
      allow_soft_placement=True,
      graph_options=graph_options,
      gpu_options=gpu_options,
      log_device_placement=log_device_placement,
      inter_op_parallelism_threads=inter_op_parallelism_threads,
      intra_op_parallelism_threads=intra_op_parallelism_threads)
  return config 
開發者ID:mlperf,項目名稱:training_results_v0.5,代碼行數:34,代碼來源:trainer_lib.py

示例8: build_graph_options

# 需要導入模塊: from tensorflow.core.protobuf import rewriter_config_pb2 [as 別名]
# 或者: from tensorflow.core.protobuf.rewriter_config_pb2 import RewriterConfig [as 別名]
def build_graph_options(cls, disable_optimizations):
        if not disable_optimizations:
            return tf.GraphOptions()

        return tf.GraphOptions(
            optimizer_options=tf.OptimizerOptions(
                opt_level=tf.OptimizerOptions.L0,
                do_common_subexpression_elimination=False,
                do_constant_folding=False,
                do_function_inlining=False,
            ),
            rewrite_options=rewriter_config_pb2.RewriterConfig(
                arithmetic_optimization=rewriter_config_pb2.RewriterConfig.OFF
            ),
        ) 
開發者ID:tf-encrypted,項目名稱:tf-encrypted,代碼行數:17,代碼來源:config.py

示例9: create_config_proto

# 需要導入模塊: from tensorflow.core.protobuf import rewriter_config_pb2 [as 別名]
# 或者: from tensorflow.core.protobuf.rewriter_config_pb2 import RewriterConfig [as 別名]
def create_config_proto(params):
  """Returns session config proto.

  Args:
    params: Params tuple, typically created by make_params or
            make_params_from_flags.
  """
  config = tf.ConfigProto()
  config.allow_soft_placement = True
  config.intra_op_parallelism_threads = params.num_intra_threads
  config.inter_op_parallelism_threads = params.num_inter_threads
  config.gpu_options.force_gpu_compatible = params.force_gpu_compatible
  if params.gpu_memory_frac_for_testing > 0:
    config.gpu_options.per_process_gpu_memory_fraction = (
        params.gpu_memory_frac_for_testing)
  if params.xla:
    config.graph_options.optimizer_options.global_jit_level = (
        tf.OptimizerOptions.ON_1)
  if params.enable_layout_optimizer:
    config.graph_options.rewrite_options.layout_optimizer = (
        rewriter_config_pb2.RewriterConfig.ON)
  if params.rewriter_config:
    rewriter_config = rewriter_config_pb2.RewriterConfig()
    text_format.Merge(params.rewriter_config, rewriter_config)
    config.graph_options.rewrite_options.CopyFrom(rewriter_config)
  if params.variable_update == 'horovod':
    import horovod.tensorflow as hvd  # pylint: disable=g-import-not-at-top
    config.gpu_options.visible_device_list = str(hvd.local_rank())

  return config 
開發者ID:HewlettPackard,項目名稱:dlcookbook-dlbs,代碼行數:32,代碼來源:benchmark_cnn.py

示例10: _assert_equal_session_config

# 需要導入模塊: from tensorflow.core.protobuf import rewriter_config_pb2 [as 別名]
# 或者: from tensorflow.core.protobuf.rewriter_config_pb2 import RewriterConfig [as 別名]
def _assert_equal_session_config(self, session_config,
                                   expected_device_filters):

    rewrite_opts = rewriter_config_pb2.RewriterConfig(
        meta_optimizer_iterations=rewriter_config_pb2.RewriterConfig.ONE)
    graph_opts = config_pb2.GraphOptions(rewrite_options=rewrite_opts)
    expected_session_config = config_pb2.ConfigProto(
        allow_soft_placement=True,
        graph_options=graph_opts,
        device_filters=expected_device_filters)
    self.assertEqual(session_config, expected_session_config) 
開發者ID:tensorflow,項目名稱:estimator,代碼行數:13,代碼來源:run_config_test.py

示例11: get_default_session_config

# 需要導入模塊: from tensorflow.core.protobuf import rewriter_config_pb2 [as 別名]
# 或者: from tensorflow.core.protobuf.rewriter_config_pb2 import RewriterConfig [as 別名]
def get_default_session_config():
  """Returns tf.ConfigProto instance."""

  rewrite_opts = rewriter_config_pb2.RewriterConfig(
      meta_optimizer_iterations=rewriter_config_pb2.RewriterConfig.ONE)
  graph_opts = config_pb2.GraphOptions(rewrite_options=rewrite_opts)

  return config_pb2.ConfigProto(
      allow_soft_placement=True, graph_options=graph_opts) 
開發者ID:tensorflow,項目名稱:estimator,代碼行數:11,代碼來源:run_config.py

示例12: _get_default_session_config_distributed

# 需要導入模塊: from tensorflow.core.protobuf import rewriter_config_pb2 [as 別名]
# 或者: from tensorflow.core.protobuf.rewriter_config_pb2 import RewriterConfig [as 別名]
def _get_default_session_config_distributed(self):
    """Returns None or tf.ConfigProto instance with default device_filters set.

    Device filters are set such that chief/master and worker communicates with
    only ps. session_config=None for evaluators or any other TaskType.
    """

    rewrite_opts = rewriter_config_pb2.RewriterConfig(
        meta_optimizer_iterations=rewriter_config_pb2.RewriterConfig.ONE)
    graph_opts = config_pb2.GraphOptions(rewrite_options=rewrite_opts)

    device_filters = None
    if self._task_type == TaskType.MASTER:
      device_filters = ['/job:ps', '/job:master']
    elif self._task_type == TaskType.CHIEF:
      device_filters = ['/job:ps', '/job:chief']
    elif self._task_type == TaskType.WORKER:
      device_filters = ['/job:ps', '/job:worker/task:%d' % self._task_id]
    elif self._task_type == TaskType.PS:
      device_filters = ['/job:ps', '/job:worker', '/job:chief', '/job:master']
    else:
      # If the task_type is `EVALUATOR` or something other than the ones in
      # TaskType then don't set any device filters.
      return None

    return config_pb2.ConfigProto(
        allow_soft_placement=True,
        graph_options=graph_opts,
        device_filters=device_filters) 
開發者ID:tensorflow,項目名稱:estimator,代碼行數:31,代碼來源:run_config.py

示例13: no_rewrite_session_config

# 需要導入模塊: from tensorflow.core.protobuf import rewriter_config_pb2 [as 別名]
# 或者: from tensorflow.core.protobuf.rewriter_config_pb2 import RewriterConfig [as 別名]
def no_rewrite_session_config():
  rewriter_config = rewriter_config_pb2.RewriterConfig(
      disable_model_pruning=True)
  graph_options = config_pb2.GraphOptions(rewrite_options=rewriter_config)
  return config_pb2.ConfigProto(graph_options=graph_options) 
開發者ID:PacktPublishing,項目名稱:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代碼行數:7,代碼來源:session_debug_testlib.py

示例14: export

# 需要導入模塊: from tensorflow.core.protobuf import rewriter_config_pb2 [as 別名]
# 或者: from tensorflow.core.protobuf.rewriter_config_pb2 import RewriterConfig [as 別名]
def export(model_params, checkpoint_file, config=None):
    # Input data
    batch_size = 1
    im_size = model_params.im_size
    guide_image = tf.placeholder(tf.float32, [batch_size, 224, 224, 3])
    gb_image = tf.placeholder(tf.float32, [batch_size, im_size[1], im_size[0], 1])
    input_image = tf.placeholder(tf.float32, [batch_size, im_size[1], im_size[0], 3])

    # Create model
    
    model_func = get_model_func(model_params.base_model)
    # split the model into visual modulator and other parts, visual modulator only need to run once
    if model_params.use_visual_modulator:
        if model_params.base_model =='lite':
            v_m_params = visual_modulator_lite(guide_image, model_params, is_training=False)
        else:
            v_m_params = visual_modulator(guide_image, model_params, is_training=False)
    else:
        v_m_params = None
    net, end_points = model_func([guide_image, gb_image, input_image], model_params, visual_modulator_params = v_m_params, is_training=False)
    probabilities = tf.nn.sigmoid(net, name = 'prob')
    global_step = tf.Variable(0, name='global_step', trainable=False)
    rewrite_options = rewriter_config_pb2.RewriterConfig()
    rewrite_options.optimizers.append('pruning')
    rewrite_options.optimizers.append('constfold')
    rewrite_options.optimizers.append('layout')
    graph_options = tf.GraphOptions(
            rewrite_options=rewrite_options, infer_shapes=True)
    config = tf.ConfigProto(
            graph_options=graph_options,
            allow_soft_placement=True,
            )
    output_names = ['prob']
    for i, v_m_param in enumerate(v_m_params):
        visual_mod_name = 'visual_mod_params_%d' % (i+1)
        tf.identity(v_m_param, name = visual_mod_name)
        output_names.append(visual_mod_name)
    # Create a saver to load the network
    saver = tf.train.Saver([v for v in tf.global_variables()]) #if '-up' not in v.name and '-cr' not in v.name])
    save_name = checkpoint_file + '.graph.pb'
    with tf.Session(config=config) as sess:
        sess.run(tf.global_variables_initializer())
        saver.restore(sess, checkpoint_file)
        if not model_params.base_model == 'lite':
            sess.run(interp_surgery(tf.global_variables()))
        output_graph_def = graph_util.convert_variables_to_constants(
                sess,
                sess.graph_def,
                output_names)
        with open(save_name, 'wb') as writer:
            writer.write(output_graph_def.SerializeToString())
        model_params.output_names = output_names
        with open(save_name+'.json', 'w') as writer:
            json.dump(vars(model_params), writer)
        print 'Model saved in', save_name 
開發者ID:linjieyangsc,項目名稱:video_seg,代碼行數:57,代碼來源:osmn.py

示例15: print_info

# 需要導入模塊: from tensorflow.core.protobuf import rewriter_config_pb2 [as 別名]
# 或者: from tensorflow.core.protobuf.rewriter_config_pb2 import RewriterConfig [as 別名]
def print_info(self):
    """Print basic information."""
    log_fn('Model:       %s' % self.model.get_model())
    dataset_name = self.dataset.name
    if self.dataset.use_synthetic_gpu_images():
      dataset_name += ' (synthetic)'
    log_fn('Dataset:     %s' % dataset_name)
    log_fn('Mode:        %s' % get_mode_from_params(self.params))
    single_session = self.params.variable_update == 'distributed_all_reduce'
    log_fn('SingleSess:  %s' % single_session)
    if single_session:
      device_list = self.raw_devices_across_tasks()
    elif self.params.variable_update == 'horovod':
      device_list = ['horovod/%s:%d' % (self.params.device, idx)
                     for idx in range(self.num_workers)]
    else:
      device_list = self.raw_devices
    log_fn('Batch size:  %s global' % (self.batch_size * self.num_workers))
    log_fn('             %s per device' % (self.batch_size /
                                           len(self.raw_devices)))
    if self.batch_group_size > 1:
      log_fn('             %d batches per prepocessing group' %
             self.batch_group_size)
    log_fn('Num batches: %d' % self.num_batches)
    log_fn('Num epochs:  %.2f' % self.num_epochs)
    log_fn('Devices:     %s' % device_list)
    log_fn('Data format: %s' % self.data_format)
    log_fn('Layout optimizer: %s' % self.enable_layout_optimizer)
    if self.rewriter_config:
      log_fn('RewriterConfig: %s' % self.rewriter_config)
    log_fn('Optimizer:   %s' % self.params.optimizer)
    log_fn('Variables:   %s' % self.params.variable_update)
    if (self.params.variable_update == 'replicated' or
        self.params.variable_update == 'distributed_all_reduce'):
      log_fn('AllReduce:   %s' % self.params.all_reduce_spec)
    if self.job_name:
      log_fn('Sync:        %s' % self.params.cross_replica_sync)
    if self.params.staged_vars:
      log_fn('Staged vars: %s' % self.params.staged_vars)
    if self.params.variable_update == 'horovod' and self.params.horovod_device:
      log_fn('Horovod on:  %s' % self.params.horovod_device)
    if self.model.get_model() in model_config.model_titles:
      print("__exp.model_title__=\"%s\"" % (model_config.model_titles[self.model.get_model()]))
    log_fn('==========') 
開發者ID:HewlettPackard,項目名稱:dlcookbook-dlbs,代碼行數:46,代碼來源:benchmark_cnn.py


注:本文中的tensorflow.core.protobuf.rewriter_config_pb2.RewriterConfig方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。