本文整理匯總了Python中tensorflow.core.protobuf.meta_graph_pb2.TensorInfo方法的典型用法代碼示例。如果您正苦於以下問題:Python meta_graph_pb2.TensorInfo方法的具體用法?Python meta_graph_pb2.TensorInfo怎麽用?Python meta_graph_pb2.TensorInfo使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.core.protobuf.meta_graph_pb2
的用法示例。
在下文中一共展示了meta_graph_pb2.TensorInfo方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: testSignatureDefValidation
# 需要導入模塊: from tensorflow.core.protobuf import meta_graph_pb2 [as 別名]
# 或者: from tensorflow.core.protobuf.meta_graph_pb2 import TensorInfo [as 別名]
def testSignatureDefValidation(self):
export_dir = os.path.join(test.get_temp_dir(),
"test_signature_def_validation")
builder = saved_model_builder.SavedModelBuilder(export_dir)
tensor_without_name = meta_graph_pb2.TensorInfo()
tensor_without_name.dtype = types_pb2.DT_FLOAT
self._validate_inputs_tensor_info(builder, tensor_without_name)
self._validate_outputs_tensor_info(builder, tensor_without_name)
tensor_without_dtype = meta_graph_pb2.TensorInfo()
tensor_without_dtype.name = "x"
self._validate_inputs_tensor_info(builder, tensor_without_dtype)
self._validate_outputs_tensor_info(builder, tensor_without_dtype)
tensor_empty = meta_graph_pb2.TensorInfo()
self._validate_inputs_tensor_info(builder, tensor_empty)
self._validate_outputs_tensor_info(builder, tensor_empty)
示例2: testConvertDefaultSignatureRegressionToSignatureDef
# 需要導入模塊: from tensorflow.core.protobuf import meta_graph_pb2 [as 別名]
# 或者: from tensorflow.core.protobuf.meta_graph_pb2 import TensorInfo [as 別名]
def testConvertDefaultSignatureRegressionToSignatureDef(self):
signatures_proto = manifest_pb2.Signatures()
regression_signature = manifest_pb2.RegressionSignature()
regression_signature.input.CopyFrom(
manifest_pb2.TensorBinding(
tensor_name=signature_constants.REGRESS_INPUTS))
regression_signature.output.CopyFrom(
manifest_pb2.TensorBinding(
tensor_name=signature_constants.REGRESS_OUTPUTS))
signatures_proto.default_signature.regression_signature.CopyFrom(
regression_signature)
signature_def = bundle_shim._convert_default_signature_to_signature_def(
signatures_proto)
# Validate regression signature correctly copied over.
self.assertEqual(signature_def.method_name,
signature_constants.REGRESS_METHOD_NAME)
self.assertEqual(len(signature_def.inputs), 1)
self.assertEqual(len(signature_def.outputs), 1)
self.assertProtoEquals(
signature_def.inputs[signature_constants.REGRESS_INPUTS],
meta_graph_pb2.TensorInfo(name=signature_constants.REGRESS_INPUTS))
self.assertProtoEquals(
signature_def.outputs[signature_constants.REGRESS_OUTPUTS],
meta_graph_pb2.TensorInfo(name=signature_constants.REGRESS_OUTPUTS))
示例3: get_node_wrapped_tensor_info
# 需要導入模塊: from tensorflow.core.protobuf import meta_graph_pb2 [as 別名]
# 或者: from tensorflow.core.protobuf.meta_graph_pb2 import TensorInfo [as 別名]
def get_node_wrapped_tensor_info(meta_graph_def: meta_graph_pb2.MetaGraphDef,
path: Text) -> any_pb2.Any:
"""Get the Any-wrapped TensorInfo for the node from the meta_graph_def.
Args:
meta_graph_def: MetaGraphDef containing the CollectionDefs to extract the
node name from.
path: Name of the collection containing the node name.
Returns:
The Any-wrapped TensorInfo for the node retrieved from the CollectionDef.
Raises:
KeyError: There was no CollectionDef with the given name (path).
ValueError: The any_list in the CollectionDef with the given name did
not have length 1.
"""
if path not in meta_graph_def.collection_def:
raise KeyError('could not find path %s in collection defs. meta_graph_def '
'was %s' % (path, meta_graph_def))
if len(meta_graph_def.collection_def[path].any_list.value) != 1:
raise ValueError(
'any_list should be of length 1. path was %s, any_list was: %s.' %
(path, meta_graph_def.collection_def[path].any_list.value))
return meta_graph_def.collection_def[path].any_list.value[0]
示例4: encode_tensor_node
# 需要導入模塊: from tensorflow.core.protobuf import meta_graph_pb2 [as 別名]
# 或者: from tensorflow.core.protobuf.meta_graph_pb2 import TensorInfo [as 別名]
def encode_tensor_node(node: types.TensorType) -> any_pb2.Any:
"""Encode a "reference" to a Tensor/SparseTensor as a TensorInfo in an Any.
We put the Tensor / SparseTensor in a TensorInfo, which we then wrap in an
Any so that it can be added to the CollectionDef.
Args:
node: Tensor node.
Returns:
Any proto wrapping a TensorInfo.
"""
any_buf = any_pb2.Any()
tensor_info = tf.compat.v1.saved_model.utils.build_tensor_info(node)
any_buf.Pack(tensor_info)
return any_buf
示例5: decode_tensor_node
# 需要導入模塊: from tensorflow.core.protobuf import meta_graph_pb2 [as 別名]
# 或者: from tensorflow.core.protobuf.meta_graph_pb2 import TensorInfo [as 別名]
def decode_tensor_node(graph: tf.Graph,
encoded_tensor_node: any_pb2.Any) -> types.TensorType:
"""Decode an encoded Tensor node encoded with encode_tensor_node.
Decodes the encoded Tensor "reference", and returns the node in the given
graph corresponding to that Tensor.
Args:
graph: Graph the Tensor
encoded_tensor_node: Encoded Tensor.
Returns:
Decoded Tensor.
"""
tensor_info = meta_graph_pb2.TensorInfo()
encoded_tensor_node.Unpack(tensor_info)
return tf.compat.v1.saved_model.utils.get_tensor_from_tensor_info(
tensor_info, graph)
示例6: build_tensor_info
# 需要導入模塊: from tensorflow.core.protobuf import meta_graph_pb2 [as 別名]
# 或者: from tensorflow.core.protobuf.meta_graph_pb2 import TensorInfo [as 別名]
def build_tensor_info(tensor):
"""Utility function to build TensorInfo proto.
Args:
tensor: Tensor or SparseTensor whose name, dtype and shape are used to
build the TensorInfo. For SparseTensors, the names of the three
constitutent Tensors are used.
Returns:
A TensorInfo protocol buffer constructed based on the supplied argument.
"""
tensor_info = meta_graph_pb2.TensorInfo(
dtype=dtypes.as_dtype(tensor.dtype).as_datatype_enum,
tensor_shape=tensor.get_shape().as_proto())
if isinstance(tensor, sparse_tensor.SparseTensor):
tensor_info.coo_sparse.values_tensor_name = tensor.values.name
tensor_info.coo_sparse.indices_tensor_name = tensor.indices.name
tensor_info.coo_sparse.dense_shape_tensor_name = tensor.dense_shape.name
else:
tensor_info.name = tensor.name
return tensor_info
開發者ID:PacktPublishing,項目名稱:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代碼行數:23,代碼來源:utils_impl.py
示例7: build_tensor_info
# 需要導入模塊: from tensorflow.core.protobuf import meta_graph_pb2 [as 別名]
# 或者: from tensorflow.core.protobuf.meta_graph_pb2 import TensorInfo [as 別名]
def build_tensor_info(tensor):
"""Utility function to build TensorInfo proto.
Args:
tensor: Tensor whose name, dtype and shape are used to build the TensorInfo.
Returns:
A TensorInfo protocol buffer constructed based on the supplied argument.
"""
dtype_enum = dtypes.as_dtype(tensor.dtype).as_datatype_enum
return meta_graph_pb2.TensorInfo(
name=tensor.name,
dtype=dtype_enum,
tensor_shape=tensor.get_shape().as_proto())
示例8: _add_input_to_signature_def
# 需要導入模塊: from tensorflow.core.protobuf import meta_graph_pb2 [as 別名]
# 或者: from tensorflow.core.protobuf.meta_graph_pb2 import TensorInfo [as 別名]
def _add_input_to_signature_def(tensor_name, map_key, signature_def):
"""Add input tensor to signature_def.
Args:
tensor_name: string name of tensor to add to signature_def inputs
map_key: string key to key into signature_def inputs map
signature_def: object of type meta_graph_pb2.SignatureDef()
Sideffect:
adds a TensorInfo with tensor_name to signature_def inputs map keyed with
map_key
"""
tensor_info = meta_graph_pb2.TensorInfo(name=tensor_name)
signature_def.inputs[map_key].CopyFrom(tensor_info)
示例9: _add_output_to_signature_def
# 需要導入模塊: from tensorflow.core.protobuf import meta_graph_pb2 [as 別名]
# 或者: from tensorflow.core.protobuf.meta_graph_pb2 import TensorInfo [as 別名]
def _add_output_to_signature_def(tensor_name, map_key, signature_def):
"""Add output tensor to signature_def.
Args:
tensor_name: string name of tensor to add to signature_def outputs
map_key: string key to key into signature_def outputs map
signature_def: object of type meta_graph_pb2.SignatureDef()
Sideffect:
adds a TensorInfo with tensor_name to signature_def outputs map keyed with
map_key
"""
tensor_info = meta_graph_pb2.TensorInfo(name=tensor_name)
signature_def.outputs[map_key].CopyFrom(tensor_info)
示例10: testConvertNamedSignatureToSignatureDef
# 需要導入模塊: from tensorflow.core.protobuf import meta_graph_pb2 [as 別名]
# 或者: from tensorflow.core.protobuf.meta_graph_pb2 import TensorInfo [as 別名]
def testConvertNamedSignatureToSignatureDef(self):
signatures_proto = manifest_pb2.Signatures()
generic_signature = manifest_pb2.GenericSignature()
generic_signature.map["input_key"].CopyFrom(
manifest_pb2.TensorBinding(tensor_name="input"))
signatures_proto.named_signatures[
signature_constants.PREDICT_INPUTS].generic_signature.CopyFrom(
generic_signature)
generic_signature = manifest_pb2.GenericSignature()
generic_signature.map["output_key"].CopyFrom(
manifest_pb2.TensorBinding(tensor_name="output"))
signatures_proto.named_signatures[
signature_constants.PREDICT_OUTPUTS].generic_signature.CopyFrom(
generic_signature)
signature_def = bundle_shim._convert_named_signatures_to_signature_def(
signatures_proto)
self.assertEqual(signature_def.method_name,
signature_constants.PREDICT_METHOD_NAME)
self.assertEqual(len(signature_def.inputs), 1)
self.assertEqual(len(signature_def.outputs), 1)
self.assertProtoEquals(
signature_def.inputs["input_key"],
meta_graph_pb2.TensorInfo(name="input"))
self.assertProtoEquals(
signature_def.outputs["output_key"],
meta_graph_pb2.TensorInfo(name="output"))
示例11: build_tensor_info
# 需要導入模塊: from tensorflow.core.protobuf import meta_graph_pb2 [as 別名]
# 或者: from tensorflow.core.protobuf.meta_graph_pb2 import TensorInfo [as 別名]
def build_tensor_info(name=None, dtype=None, shape=None):
"""Utility function to build TensorInfo proto.
Args:
name: Name of the tensor to be used in the TensorInfo.
dtype: Datatype to be set in the TensorInfo.
shape: TensorShapeProto to specify the shape of the tensor in the
TensorInfo.
Returns:
A TensorInfo protocol buffer constructed based on the supplied arguments.
"""
return meta_graph_pb2.TensorInfo(name=name, dtype=dtype, shape=shape)
# SignatureDef helpers.
示例12: test_ragged_roundtrip
# 需要導入模塊: from tensorflow.core.protobuf import meta_graph_pb2 [as 別名]
# 或者: from tensorflow.core.protobuf.meta_graph_pb2 import TensorInfo [as 別名]
def test_ragged_roundtrip(self):
if not hasattr(meta_graph_pb2.TensorInfo, 'CompositeTensor'):
self.skipTest('This version of TensorFlow does not support '
'CompositeTenors in TensorInfo.')
export_path = os.path.join(tempfile.mkdtemp(), 'export')
with tf.compat.v1.Graph().as_default():
with tf.compat.v1.Session().as_default() as session:
input_float = tf.compat.v1.ragged.placeholder(tf.float32, ragged_rank=1,
value_shape=[])
output = input_float / 2.0
inputs = {'input': input_float}
outputs = {'output': output}
saved_transform_io.write_saved_transform_from_session(
session, inputs, outputs, export_path)
with tf.compat.v1.Graph().as_default():
with tf.compat.v1.Session().as_default() as session:
splits = np.array([0, 2, 3], dtype=np.int64)
values = np.array([1.0, 2.0, 4.0], dtype=np.float32)
input_ragged = tf.RaggedTensor.from_row_splits(values, splits)
# Using a computed input gives confidence that the graphs are fused
inputs = {'input': input_ragged * 10}
_, outputs = (
saved_transform_io.partially_apply_saved_transform_internal(
export_path, inputs))
output_ragged = outputs['output']
self.assertIsInstance(output_ragged, tf.RaggedTensor)
result = session.run(output_ragged)
# indices and shape unchanged; values multipled by 10 and divided by 2
self.assertAllEqual(splits, result.row_splits)
self.assertEqual([5.0, 10.0, 20.0], result.values.tolist())
示例13: get_tensor_from_tensor_info
# 需要導入模塊: from tensorflow.core.protobuf import meta_graph_pb2 [as 別名]
# 或者: from tensorflow.core.protobuf.meta_graph_pb2 import TensorInfo [as 別名]
def get_tensor_from_tensor_info(tensor_info, graph=None, import_scope=None):
"""Returns the Tensor or SparseTensor described by a TensorInfo proto.
Args:
tensor_info: A TensorInfo proto describing a Tensor or SparseTensor.
graph: The tf.Graph in which tensors are looked up. If None, the
current default graph is used.
import_scope: If not None, names in `tensor_info` are prefixed with this
string before lookup.
Returns:
The Tensor or SparseTensor in `graph` described by `tensor_info`.
Raises:
KeyError: If `tensor_info` does not correspond to a tensor in `graph`.
ValueError: If `tensor_info` is malformed.
"""
graph = graph if graph is not None else ops.get_default_graph()
def _get_tensor(name):
return graph.get_tensor_by_name(
ops.prepend_name_scope(name, import_scope=import_scope))
encoding = tensor_info.WhichOneof("encoding")
if encoding == "name":
return _get_tensor(tensor_info.name)
elif encoding == "coo_sparse":
return sparse_tensor.SparseTensor(
_get_tensor(tensor_info.coo_sparse.indices_tensor_name),
_get_tensor(tensor_info.coo_sparse.values_tensor_name),
_get_tensor(tensor_info.coo_sparse.dense_shape_tensor_name))
else:
raise ValueError("Invalid TensorInfo.encoding: %s" % encoding)
開發者ID:PacktPublishing,項目名稱:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代碼行數:33,代碼來源:utils_impl.py
示例14: build_prediction_graph
# 需要導入模塊: from tensorflow.core.protobuf import meta_graph_pb2 [as 別名]
# 或者: from tensorflow.core.protobuf.meta_graph_pb2 import TensorInfo [as 別名]
def build_prediction_graph(self):
"""Builds prediction graph and registers appropriate endpoints."""
examples = tf.placeholder(tf.string, shape=(None,))
features = {
'image': tf.FixedLenFeature(
shape=[IMAGE_PIXELS], dtype=tf.float32),
'key': tf.FixedLenFeature(
shape=[], dtype=tf.string),
}
parsed = tf.parse_example(examples, features)
images = parsed['image']
keys = parsed['key']
# Build a Graph that computes predictions from the inference model.
logits = inference(images, self.hidden1, self.hidden2)
softmax = tf.nn.softmax(logits)
prediction = tf.argmax(softmax, 1)
# Mark the inputs and the outputs
# Marking the input tensor with an alias with suffix _bytes. This is to
# indicate that this tensor value is raw bytes and will be base64 encoded
# over HTTP.
# Note that any output tensor marked with an alias with suffix _bytes, shall
# be base64 encoded in the HTTP response. To get the binary value, it
# should be base64 decoded.
input_signatures = {}
predict_input_tensor = meta_graph_pb2.TensorInfo()
predict_input_tensor.name = examples.name
predict_input_tensor.dtype = examples.dtype.as_datatype_enum
input_signatures['example_bytes'] = predict_input_tensor
tf.add_to_collection('inputs',
json.dumps({
'examples_bytes': examples.name
}))
tf.add_to_collection('outputs',
json.dumps({
'key': keys.name,
'prediction': prediction.name,
'scores': softmax.name
}))
output_signatures = {}
outputs_dict = {'key': keys.name,
'prediction': prediction.name,
'scores': softmax.name}
for key, val in outputs_dict.iteritems():
predict_output_tensor = meta_graph_pb2.TensorInfo()
predict_output_tensor.name = val
for placeholder in [keys, prediction, softmax]:
if placeholder.name == val:
predict_output_tensor.dtype = placeholder.dtype.as_datatype_enum
output_signatures[key] = predict_output_tensor
return input_signatures, output_signatures
示例15: testAddInputToSignatureDef
# 需要導入模塊: from tensorflow.core.protobuf import meta_graph_pb2 [as 別名]
# 或者: from tensorflow.core.protobuf.meta_graph_pb2 import TensorInfo [as 別名]
def testAddInputToSignatureDef(self):
signature_def = meta_graph_pb2.SignatureDef()
signature_def_compare = meta_graph_pb2.SignatureDef()
# Add input to signature-def corresponding to `foo_key`.
bundle_shim._add_input_to_signature_def("foo-name", "foo-key",
signature_def)
self.assertEqual(len(signature_def.inputs), 1)
self.assertEqual(len(signature_def.outputs), 0)
self.assertProtoEquals(
signature_def.inputs["foo-key"],
meta_graph_pb2.TensorInfo(name="foo-name"))
# Attempt to add another input to the signature-def with the same tensor
# name and key.
bundle_shim._add_input_to_signature_def("foo-name", "foo-key",
signature_def)
self.assertEqual(len(signature_def.inputs), 1)
self.assertEqual(len(signature_def.outputs), 0)
self.assertProtoEquals(
signature_def.inputs["foo-key"],
meta_graph_pb2.TensorInfo(name="foo-name"))
# Add another input to the signature-def corresponding to `bar-key`.
bundle_shim._add_input_to_signature_def("bar-name", "bar-key",
signature_def)
self.assertEqual(len(signature_def.inputs), 2)
self.assertEqual(len(signature_def.outputs), 0)
self.assertProtoEquals(
signature_def.inputs["bar-key"],
meta_graph_pb2.TensorInfo(name="bar-name"))
# Add an input to the signature-def corresponding to `foo-key` with an
# updated tensor name.
bundle_shim._add_input_to_signature_def("bar-name", "foo-key",
signature_def)
self.assertEqual(len(signature_def.inputs), 2)
self.assertEqual(len(signature_def.outputs), 0)
self.assertProtoEquals(
signature_def.inputs["foo-key"],
meta_graph_pb2.TensorInfo(name="bar-name"))
# Test that there are no other side-effects.
del signature_def.inputs["foo-key"]
del signature_def.inputs["bar-key"]
self.assertProtoEquals(signature_def, signature_def_compare)