本文整理匯總了Python中tensorflow.core.framework.variable_pb2.VariableDef方法的典型用法代碼示例。如果您正苦於以下問題:Python variable_pb2.VariableDef方法的具體用法?Python variable_pb2.VariableDef怎麽用?Python variable_pb2.VariableDef使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.core.framework.variable_pb2
的用法示例。
在下文中一共展示了variable_pb2.VariableDef方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: to_proto
# 需要導入模塊: from tensorflow.core.framework import variable_pb2 [as 別名]
# 或者: from tensorflow.core.framework.variable_pb2 import VariableDef [as 別名]
def to_proto(self, export_scope=None):
"""Converts a `Variable` to a `VariableDef` protocol buffer.
Args:
export_scope: Optional `string`. Name scope to remove.
Returns:
A `VariableDef` protocol buffer, or `None` if the `Variable` is not
in the specified name scope.
"""
if (export_scope is None or
self._variable.name.startswith(export_scope)):
var_def = variable_pb2.VariableDef()
var_def.variable_name = ops.strip_name_scope(
self._variable.name, export_scope)
var_def.initializer_name = ops.strip_name_scope(
self.initializer.name, export_scope)
var_def.snapshot_name = ops.strip_name_scope(
self._snapshot.name, export_scope)
if self._save_slice_info:
var_def.save_slice_info_def.MergeFrom(self._save_slice_info.to_proto(
export_scope=export_scope))
return var_def
else:
return None
示例2: _init_from_proto
# 需要導入模塊: from tensorflow.core.framework import variable_pb2 [as 別名]
# 或者: from tensorflow.core.framework.variable_pb2 import VariableDef [as 別名]
def _init_from_proto(self, variable_def, import_scope=None):
"""Creates a new variable from `VariableDef` protocol buffer.
Args:
variable_def: `VariableDef` protocol buffer.
import_scope: Optional `string`. Name scope to add.
"""
assert isinstance(variable_def, variable_pb2.VariableDef)
# Create from variable_def.
g = ops.get_default_graph()
self._variable = g.as_graph_element(
ops.prepend_name_scope(variable_def.variable_name,
import_scope=import_scope))
self._initializer_op = g.as_graph_element(
ops.prepend_name_scope(variable_def.initializer_name,
import_scope=import_scope))
self._snapshot = g.as_graph_element(
ops.prepend_name_scope(variable_def.snapshot_name,
import_scope=import_scope))
if variable_def.HasField("save_slice_info_def"):
self._save_slice_info = Variable.SaveSliceInfo(
save_slice_info_def=variable_def.save_slice_info_def)
else:
self._save_slice_info = None
self._caching_device = None
示例3: _get_grads
# 需要導入模塊: from tensorflow.core.framework import variable_pb2 [as 別名]
# 或者: from tensorflow.core.framework.variable_pb2 import VariableDef [as 別名]
def _get_grads(single_gpu_meta_graph_def):
trainable_vars = []
trainable_vars_defs = single_gpu_meta_graph_def.collection_def[tf.GraphKeys.TRAINABLE_VARIABLES]
for var_def_string in trainable_vars_defs.bytes_list.value:
var_def = variable_pb2.VariableDef()
var_def.ParseFromString(var_def_string)
trainable_vars.append(var_def.variable_name)
sparse_grads = []
dense_grads = []
grad_info_defs = single_gpu_meta_graph_def.collection_def[tf.GraphKeys.GRADIENTS_INFO]
for grad_info_def_string in grad_info_defs.bytes_list.value:
gradients_info_def = gradients_info_pb2.GradientsInfoDef()
gradients_info_def.ParseFromString(grad_info_def_string)
if gradients_info_def.target_tensor_info.values_tensor_name not in trainable_vars:
continue
if gradients_info_def.grad_tensor_info.tensor_type == gradients_info_pb2.GradientsInfoDef.TensorInfoDef.INDEXED_SLICES:
sparse_grads.append(gradients_info_def)
else:
dense_grads.append(gradients_info_def)
assert len(sparse_grads) > 0 or len(dense_grads) > 0
return sparse_grads, dense_grads
示例4: _init_from_proto
# 需要導入模塊: from tensorflow.core.framework import variable_pb2 [as 別名]
# 或者: from tensorflow.core.framework.variable_pb2 import VariableDef [as 別名]
def _init_from_proto(self, variable_def, import_scope=None):
"""Recreates the Variable object from a `VariableDef` protocol buffer.
Args:
variable_def: `VariableDef` protocol buffer, describing a variable
whose nodes already exists in the graph.
import_scope: Optional `string`. Name scope to add.
"""
assert isinstance(variable_def, variable_pb2.VariableDef)
# Create from variable_def.
g = ops.get_default_graph()
self._variable = g.as_graph_element(
ops.prepend_name_scope(variable_def.variable_name,
import_scope=import_scope))
self._initializer_op = g.as_graph_element(
ops.prepend_name_scope(variable_def.initializer_name,
import_scope=import_scope))
self._snapshot = g.as_graph_element(
ops.prepend_name_scope(variable_def.snapshot_name,
import_scope=import_scope))
if variable_def.HasField("save_slice_info_def"):
self._save_slice_info = Variable.SaveSliceInfo(
save_slice_info_def=variable_def.save_slice_info_def)
else:
self._save_slice_info = None
self._caching_device = None
示例5: _init_from_proto
# 需要導入模塊: from tensorflow.core.framework import variable_pb2 [as 別名]
# 或者: from tensorflow.core.framework.variable_pb2 import VariableDef [as 別名]
def _init_from_proto(self, variable_def, import_scope=None):
"""Initializes from `VariableDef` proto."""
assert isinstance(variable_def, variable_pb2.VariableDef)
if not variable_def.is_resource:
raise ValueError("Trying to restore Variable as ResourceVariable.")
# Create from variable_def.
g = ops.get_default_graph()
self._handle = g.as_graph_element(
ops.prepend_name_scope(variable_def.variable_name,
import_scope=import_scope))
self._initialize_op = g.as_graph_element(
ops.prepend_name_scope(variable_def.initializer_name,
import_scope=import_scope))
if variable_def.snapshot_name:
self._cached_value = g.as_graph_element(
ops.prepend_name_scope(variable_def.snapshot_name,
import_scope=import_scope))
else:
self._cached_value = None
if variable_def.HasField("save_slice_info_def"):
self._save_slice_info = variables.Variable.SaveSliceInfo(
save_slice_info_def=variable_def.save_slice_info_def)
else:
self._save_slice_info = None
self._caching_device = None
self._dtype = dtypes.as_dtype(self._handle.op.get_attr("dtype"))
self._graph_element = self.value()
示例6: to_proto
# 需要導入模塊: from tensorflow.core.framework import variable_pb2 [as 別名]
# 或者: from tensorflow.core.framework.variable_pb2 import VariableDef [as 別名]
def to_proto(self, export_scope=None):
"""Converts a `ResourceVariable` to a `VariableDef` protocol buffer.
Args:
export_scope: Optional `string`. Name scope to remove.
Returns:
A `VariableDef` protocol buffer, or `None` if the `Variable` is not
in the specified name scope.
"""
if (export_scope is None or
self.handle.name.startswith(export_scope)):
var_def = variable_pb2.VariableDef()
var_def.variable_name = ops.strip_name_scope(
self.handle.name, export_scope)
var_def.initializer_name = ops.strip_name_scope(
self.initializer.name, export_scope)
if self._cached_value is not None:
var_def.snapshot_name = ops.strip_name_scope(
self._cached_value.name, export_scope)
var_def.is_resource = True
if self._save_slice_info:
var_def.save_slice_info_def.MergeFrom(self._save_slice_info.to_proto(
export_scope=export_scope))
return var_def
else:
return None
示例7: _from_proto_fn
# 需要導入模塊: from tensorflow.core.framework import variable_pb2 [as 別名]
# 或者: from tensorflow.core.framework.variable_pb2 import VariableDef [as 別名]
def _from_proto_fn(v, import_scope=None):
"""Creates Variable or ResourceVariable from VariableDef as needed."""
if v.is_resource:
return ResourceVariable.from_proto(v, import_scope=import_scope)
return variables.Variable.from_proto(v, import_scope=import_scope)
示例8: update_snapshot_name
# 需要導入模塊: from tensorflow.core.framework import variable_pb2 [as 別名]
# 或者: from tensorflow.core.framework.variable_pb2 import VariableDef [as 別名]
def update_snapshot_name(self, var_coll_name):
var_list = self._metagraph.collection_def[var_coll_name]
for i, value in enumerate(var_list.bytes_list.value):
var_def = variable_pb2.VariableDef()
var_def.ParseFromString(value)
# Somehow node Model/global_step/read doesn't have any fanout and seems to
# be only used for snapshot; this is different from all other variables.
if var_def.snapshot_name != "Model/global_step/read:0":
var_def.snapshot_name = with_autoparallel_prefix(
0, var_def.snapshot_name)
value = var_def.SerializeToString()
var_list.bytes_list.value[i] = value
示例9: update_local_variables
# 需要導入模塊: from tensorflow.core.framework import variable_pb2 [as 別名]
# 或者: from tensorflow.core.framework.variable_pb2 import VariableDef [as 別名]
def update_local_variables(multi_gpu_meta_graph_def, op_names_to_replicate,
num_replicas):
def _get_new_var_def(var_def, prefix):
new_var_def = variable_pb2.VariableDef()
new_var_def.CopyFrom(var_def)
new_var_def.variable_name = \
ops.prepend_name_scope(var_def.variable_name, prefix)
new_var_def.initializer_name = \
ops.prepend_name_scope(var_def.initializer_name, prefix)
new_var_def.snapshot_name = \
ops.prepend_name_scope(var_def.snapshot_name, prefix)
return new_var_def
if tf.GraphKeys.LOCAL_VARIABLES not in multi_gpu_meta_graph_def.collection_def:
return
lv_collection = \
multi_gpu_meta_graph_def.collection_def[tf.GraphKeys.LOCAL_VARIABLES]
new_lv_col = meta_graph_pb2.CollectionDef()
for var_def_string in lv_collection.bytes_list.value:
var_def = variable_pb2.VariableDef()
var_def.ParseFromString(var_def_string)
if _get_op_name(var_def.variable_name) in op_names_to_replicate:
new_var_defs = \
[_get_new_var_def(var_def, parallax_replica_prefix(i))
for i in range(num_replicas)]
new_lv_col.bytes_list.value.extend(
[new_var_def.SerializeToString()
for new_var_def in new_var_defs])
else:
new_lv_col.bytes_list.value.append(var_def.SerializeToString())
multi_gpu_meta_graph_def.collection_def[tf.GraphKeys.LOCAL_VARIABLES]\
.Clear()
multi_gpu_meta_graph_def.collection_def[tf.GraphKeys.LOCAL_VARIABLES]\
.CopyFrom(new_lv_col)
if len(lv_collection.bytes_list.value) == 0:
del multi_gpu_meta_graph_def\
.collection_def[tf.GraphKeys.LOCAL_VARIABLES]
示例10: strip_meta_graph
# 需要導入模塊: from tensorflow.core.framework import variable_pb2 [as 別名]
# 或者: from tensorflow.core.framework.variable_pb2 import VariableDef [as 別名]
def strip_meta_graph(meta_graph_def, node_names, var_names):
node_names = node_names[:]
collections = meta_graph_def.collection_def
# Look for matching variable names and initializers and keep them too.
var_def = variable_pb2.VariableDef()
for var_col_name in ["variables", "trainable_variables"]:
var_def_bs = collections[var_col_name].bytes_list.value
for var_def_b in var_def_bs:
var_def.ParseFromString(var_def_b)
if var_def.variable_name not in var_names:
# TODO(adamb) Should remove variable from collection.
continue
node_names.append(var_def.initializer_name)
wc_def = control_flow_pb2.WhileContextDef()
wc_values = collections["while_context"].bytes_list.value
for wc_ix in range(len(wc_values) - 1, -1, -1):
wc_bytes = wc_values[wc_ix]
wc_def.ParseFromString(wc_bytes)
unused = True
wc_pivot_name = wc_def.pivot_name
for name in node_names:
if name.startswith(wc_pivot_name):
unused = False
break
if unused:
del wc_values[wc_ix]
graph_def = meta_graph_def.graph_def
eprint("only keeping", node_names, "from", [n.name for n in graph_def.node])
graph_def = graph_util.extract_sub_graph(graph_def, node_names)
meta_graph_def.graph_def.CopyFrom(graph_def)
示例11: _init_from_proto
# 需要導入模塊: from tensorflow.core.framework import variable_pb2 [as 別名]
# 或者: from tensorflow.core.framework.variable_pb2 import VariableDef [as 別名]
def _init_from_proto(self, variable_def, import_scope=None):
"""Recreates the Variable object from a `VariableDef` protocol buffer.
Args:
variable_def: `VariableDef` protocol buffer, describing a variable
whose nodes already exists in the graph.
import_scope: Optional `string`. Name scope to add.
"""
assert isinstance(variable_def, variable_pb2.VariableDef)
# Create from variable_def.
g = ops.get_default_graph()
self._variable = g.as_graph_element(
ops.prepend_name_scope(variable_def.variable_name,
import_scope=import_scope))
self._initializer_op = g.as_graph_element(
ops.prepend_name_scope(variable_def.initializer_name,
import_scope=import_scope))
# Tests whether initial_value_name exists first for backwards compatibility.
if (hasattr(variable_def, "initial_value_name") and
variable_def.initial_value_name):
self._initial_value = g.as_graph_element(
ops.prepend_name_scope(variable_def.initial_value_name,
import_scope=import_scope))
else:
self._initial_value = None
self._snapshot = g.as_graph_element(
ops.prepend_name_scope(variable_def.snapshot_name,
import_scope=import_scope))
if variable_def.HasField("save_slice_info_def"):
self._save_slice_info = Variable.SaveSliceInfo(
save_slice_info_def=variable_def.save_slice_info_def)
else:
self._save_slice_info = None
self._caching_device = None
self._constraint = None
開發者ID:PacktPublishing,項目名稱:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代碼行數:37,代碼來源:variables.py
示例12: to_proto
# 需要導入模塊: from tensorflow.core.framework import variable_pb2 [as 別名]
# 或者: from tensorflow.core.framework.variable_pb2 import VariableDef [as 別名]
def to_proto(self, export_scope=None):
"""Converts a `Variable` to a `VariableDef` protocol buffer.
Args:
export_scope: Optional `string`. Name scope to remove.
Returns:
A `VariableDef` protocol buffer, or `None` if the `Variable` is not
in the specified name scope.
"""
if (export_scope is None or
self._variable.name.startswith(export_scope)):
var_def = variable_pb2.VariableDef()
var_def.variable_name = ops.strip_name_scope(
self._variable.name, export_scope)
if self._initial_value is not None:
# For backwards compatibility.
var_def.initial_value_name = ops.strip_name_scope(
self._initial_value.name, export_scope)
var_def.initializer_name = ops.strip_name_scope(
self.initializer.name, export_scope)
var_def.snapshot_name = ops.strip_name_scope(
self._snapshot.name, export_scope)
if self._save_slice_info:
var_def.save_slice_info_def.MergeFrom(self._save_slice_info.to_proto(
export_scope=export_scope))
return var_def
else:
return None
開發者ID:PacktPublishing,項目名稱:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代碼行數:31,代碼來源:variables.py
示例13: _init_from_proto
# 需要導入模塊: from tensorflow.core.framework import variable_pb2 [as 別名]
# 或者: from tensorflow.core.framework.variable_pb2 import VariableDef [as 別名]
def _init_from_proto(self, variable_def, import_scope=None):
"""Initializes from `VariableDef` proto."""
# Note that init_from_proto is currently not supported in Eager mode.
assert context.in_graph_mode()
self._in_graph_mode = True
assert isinstance(variable_def, variable_pb2.VariableDef)
if not variable_def.is_resource:
raise ValueError("Trying to restore Variable as ResourceVariable.")
# Create from variable_def.
g = ops.get_default_graph()
self._handle = g.as_graph_element(
ops.prepend_name_scope(
variable_def.variable_name, import_scope=import_scope))
self._graph_shape = tensor_shape.TensorShape(
self._handle.op.get_attr("shape"))
self._handle_device = self._handle.device
self._handle_name = self._handle.name
self._initializer_op = g.as_graph_element(
ops.prepend_name_scope(
variable_def.initializer_name, import_scope=import_scope))
if variable_def.snapshot_name:
self._cached_value = g.as_graph_element(
ops.prepend_name_scope(
variable_def.snapshot_name, import_scope=import_scope))
else:
self._cached_value = None
if variable_def.HasField("save_slice_info_def"):
self._save_slice_info = variables.Variable.SaveSliceInfo(
save_slice_info_def=variable_def.save_slice_info_def)
else:
self._save_slice_info = None
self._caching_device = None
self._dtype = dtypes.as_dtype(self._handle.op.get_attr("dtype"))
self._graph_element = self.value()
self._constraint = None
# LINT.ThenChange(//tensorflow/python/eager/graph_callable.py)
開發者ID:PacktPublishing,項目名稱:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代碼行數:39,代碼來源:resource_variable_ops.py
示例14: to_proto
# 需要導入模塊: from tensorflow.core.framework import variable_pb2 [as 別名]
# 或者: from tensorflow.core.framework.variable_pb2 import VariableDef [as 別名]
def to_proto(self, export_scope=None):
"""Converts a `ResourceVariable` to a `VariableDef` protocol buffer.
Args:
export_scope: Optional `string`. Name scope to remove.
Raises:
RuntimeError: If run in EAGER mode.
Returns:
A `VariableDef` protocol buffer, or `None` if the `Variable` is not
in the specified name scope.
"""
if context.in_eager_mode():
raise RuntimeError("to_proto not supported in EAGER mode.")
if export_scope is None or self.handle.name.startswith(export_scope):
var_def = variable_pb2.VariableDef()
var_def.variable_name = ops.strip_name_scope(self.handle.name,
export_scope)
var_def.initializer_name = ops.strip_name_scope(self.initializer.name,
export_scope)
if self._cached_value is not None:
var_def.snapshot_name = ops.strip_name_scope(self._cached_value.name,
export_scope)
var_def.is_resource = True
if self._save_slice_info:
var_def.save_slice_info_def.MergeFrom(
self._save_slice_info.to_proto(export_scope=export_scope))
return var_def
else:
return None
開發者ID:PacktPublishing,項目名稱:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代碼行數:33,代碼來源:resource_variable_ops.py
示例15: _to_proto_fn
# 需要導入模塊: from tensorflow.core.framework import variable_pb2 [as 別名]
# 或者: from tensorflow.core.framework.variable_pb2 import VariableDef [as 別名]
def _to_proto_fn(v, export_scope=None):
"""Converts Variable and ResourceVariable to VariableDef for collections."""
return v.to_proto(export_scope=export_scope)
開發者ID:PacktPublishing,項目名稱:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代碼行數:5,代碼來源:resource_variable_ops.py