本文整理匯總了Python中tensorflow.core.framework.tensor_shape_pb2.TensorShapeProto方法的典型用法代碼示例。如果您正苦於以下問題:Python tensor_shape_pb2.TensorShapeProto方法的具體用法?Python tensor_shape_pb2.TensorShapeProto怎麽用?Python tensor_shape_pb2.TensorShapeProto使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.core.framework.tensor_shape_pb2
的用法示例。
在下文中一共展示了tensor_shape_pb2.TensorShapeProto方法的12個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _MakeShape
# 需要導入模塊: from tensorflow.core.framework import tensor_shape_pb2 [as 別名]
# 或者: from tensorflow.core.framework.tensor_shape_pb2 import TensorShapeProto [as 別名]
def _MakeShape(v, arg_name):
"""Convert v into a TensorShapeProto."""
# Args:
# v: A TensorShapeProto, a list of ints, or a tensor_shape.TensorShape.
# arg_name: String, for error messages.
# Returns:
# A TensorShapeProto.
if isinstance(v, tensor_shape_pb2.TensorShapeProto):
for d in v.dim:
if d.name:
logging.warning("Warning: TensorShapeProto with a named dimension: %s",
str(v))
break
return v
return tensor_shape.as_shape(v).as_proto()
示例2: ShapeEquals
# 需要導入模塊: from tensorflow.core.framework import tensor_shape_pb2 [as 別名]
# 或者: from tensorflow.core.framework.tensor_shape_pb2 import TensorShapeProto [as 別名]
def ShapeEquals(tensor_proto, shape):
"""Returns True if "tensor_proto" has the given "shape".
Args:
tensor_proto: A TensorProto.
shape: A tensor shape, expressed as a TensorShape, list, or tuple.
Returns:
True if "tensor_proto" has the given "shape", otherwise False.
Raises:
TypeError: If "tensor_proto" is not a TensorProto, or shape is not a
TensorShape, list, or tuple.
"""
if not isinstance(tensor_proto, tensor_pb2.TensorProto):
raise TypeError("tensor_proto is not a tensor_pb2.TensorProto object")
if isinstance(shape, tensor_shape_pb2.TensorShapeProto):
shape = [d.size for d in shape.dim]
elif not isinstance(shape, (list, tuple)):
raise TypeError("shape is not a list or tuple")
tensor_shape_list = [d.size for d in tensor_proto.tensor_shape.dim]
return all(x == y for x, y in zip(tensor_shape_list, shape))
示例3: testConvertFromProto
# 需要導入模塊: from tensorflow.core.framework import tensor_shape_pb2 [as 別名]
# 或者: from tensorflow.core.framework.tensor_shape_pb2 import TensorShapeProto [as 別名]
def testConvertFromProto(self):
def make_tensor_shape_proto(shape):
return tensor_shape_pb2.TensorShapeProto(
dim=[tensor_shape_pb2.TensorShapeProto.Dim(size=x) for x in shape])
proto = make_tensor_shape_proto([])
self.assertEqual(tensor_shape.TensorShape([]),
tensor_shape.TensorShape(proto))
self.assertEqual(tensor_shape.TensorShape([]),
tensor_shape.as_shape(proto))
proto = make_tensor_shape_proto([1, 37, 42])
self.assertEqual(tensor_shape.TensorShape([1, 37, 42]),
tensor_shape.TensorShape(proto))
self.assertEqual(tensor_shape.TensorShape([1, 37, 42]),
tensor_shape.as_shape(proto))
partial_proto_shape = tensor_shape.as_shape(
make_tensor_shape_proto([-1, 37, 42]))
partial_shape = tensor_shape.TensorShape([None, 37, 42])
self.assertNotEqual(partial_proto_shape, partial_shape)
self.assertEqual(partial_proto_shape[0].value, None)
self.assertEqual(partial_proto_shape[1].value, 37)
self.assertEqual(partial_proto_shape[2].value, 42)
self.assertTrue(partial_shape.is_compatible_with(partial_proto_shape))
示例4: __init__
# 需要導入模塊: from tensorflow.core.framework import tensor_shape_pb2 [as 別名]
# 或者: from tensorflow.core.framework.tensor_shape_pb2 import TensorShapeProto [as 別名]
def __init__(self, op, value_index, dtype):
"""Creates a new `Output`.
Args:
op: An `Operation`. `Operation` that computes this tensor.
value_index: An `int`. Index of the operation's endpoint that produces
this tensor.
dtype: A `DType`. Type of elements stored in this tensor.
Raises:
TypeError: If the op is not an `Operation`.
"""
if not isinstance(op, Operation):
raise TypeError("op needs to be an Operation: %s" % op)
self._op = op
self._value_index = value_index
self._dtype = dtypes.as_dtype(dtype)
self._shape = tensor_shape.unknown_shape()
# List of operations that use this Output as input. We maintain this list
# to easily navigate a computation graph.
self._consumers = []
# Attributes used for C++ shape inference. Not inspected, only forwarded.
self._handle_shape = tensor_shape_pb2.TensorShapeProto()
self._handle_dtype = types_pb2.DT_INVALID
示例5: _MakeShape
# 需要導入模塊: from tensorflow.core.framework import tensor_shape_pb2 [as 別名]
# 或者: from tensorflow.core.framework.tensor_shape_pb2 import TensorShapeProto [as 別名]
def _MakeShape(v, arg_name):
"""Convert v into a TensorShapeProto."""
# Args:
# v: A TensorShapeProto, a list of ints, or a tensor_shape.TensorShape.
# arg_name: String, for error messages.
# Returns:
# A TensorShapeProto.
if isinstance(v, tensor_shape_pb2.TensorShapeProto):
for d in v.dim:
if d.name:
logging.warning("Warning: TensorShapeProto with a named dimension: %s",
str(v))
break
return v
try:
return tensor_shape.as_shape(v).as_proto()
except TypeError as e:
raise TypeError("Error converting %s to a TensorShape: %s" % (arg_name, e))
except ValueError as e:
raise ValueError("Error converting %s to a TensorShape: %s" % (arg_name, e))
開發者ID:PacktPublishing,項目名稱:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代碼行數:23,代碼來源:op_def_library.py
示例6: __init__
# 需要導入模塊: from tensorflow.core.framework import tensor_shape_pb2 [as 別名]
# 或者: from tensorflow.core.framework.tensor_shape_pb2 import TensorShapeProto [as 別名]
def __init__(self, dims):
"""Creates a new TensorShape with the given dimensions.
Args:
dims: A list of Dimensions, or None if the shape is unspecified.
DEPRECATED: A single integer is treated as a singleton list.
Raises:
TypeError: If dims cannot be converted to a list of dimensions.
"""
# TODO(irving): Eliminate the single integer special case.
if dims is None:
self._dims = None
elif isinstance(dims, compat.bytes_or_text_types):
raise TypeError("A string has ambiguous TensorShape, please wrap in a "
"list or convert to an int: %s" % dims)
elif isinstance(dims, tensor_shape_pb2.TensorShapeProto):
if dims.unknown_rank:
self._dims = None
else:
self._dims = [
# Protos store variable-size dimensions as -1
as_dimension(dim.size if dim.size != -1 else None)
for dim in dims.dim
]
elif isinstance(dims, TensorShape):
self._dims = dims.dims
else:
try:
dims_iter = iter(dims)
except TypeError:
# Treat as a singleton dimension
self._dims = [as_dimension(dims)]
else:
# Got a list of dimensions
self._dims = [as_dimension(d) for d in dims_iter]
示例7: as_proto
# 需要導入模塊: from tensorflow.core.framework import tensor_shape_pb2 [as 別名]
# 或者: from tensorflow.core.framework.tensor_shape_pb2 import TensorShapeProto [as 別名]
def as_proto(self):
"""Returns this shape as a `TensorShapeProto`."""
if self._dims is None:
return tensor_shape_pb2.TensorShapeProto(unknown_rank=True)
else:
return tensor_shape_pb2.TensorShapeProto(dim=[
tensor_shape_pb2.TensorShapeProto.Dim(size=-1
if d.value is None else d.value)
for d in self._dims
])
示例8: TensorShapeProtoToList
# 需要導入模塊: from tensorflow.core.framework import tensor_shape_pb2 [as 別名]
# 或者: from tensorflow.core.framework.tensor_shape_pb2 import TensorShapeProto [as 別名]
def TensorShapeProtoToList(shape):
"""Convert a TensorShape to a list.
Args:
shape: A TensorShapeProto.
Returns:
List of integers representing the dimensions of the tensor.
"""
return [dim.size for dim in shape.dim]
示例9: __init__
# 需要導入模塊: from tensorflow.core.framework import tensor_shape_pb2 [as 別名]
# 或者: from tensorflow.core.framework.tensor_shape_pb2 import TensorShapeProto [as 別名]
def __init__(self, dims):
"""Creates a new TensorShape with the given dimensions.
Args:
dims: A list of Dimensions, or None if the shape is unspecified.
DEPRECATED: A single integer is treated as a singleton list.
Raises:
TypeError: If dims cannot be converted to a list of dimensions.
"""
# TODO(irving): Eliminate the single integer special case.
if dims is None:
self._dims = None
elif isinstance(dims, compat.bytes_or_text_types):
raise TypeError("A string has ambiguous TensorShape, please wrap in a "
"list or convert to an int: %s" % dims)
elif isinstance(dims, tensor_shape_pb2.TensorShapeProto):
if dims.unknown_rank:
self._dims = None
else:
self._dims = [
# Protos store variable-size dimensions as -1
as_dimension(dim.size if dim.size != -1 else None)
for dim in dims.dim]
elif isinstance(dims, TensorShape):
self._dims = dims.dims
else:
try:
dims_iter = iter(dims)
except TypeError:
# Treat as a singleton dimension
self._dims = [as_dimension(dims)]
else:
# Got a list of dimensions
self._dims = [as_dimension(d) for d in dims_iter]
示例10: as_proto
# 需要導入模塊: from tensorflow.core.framework import tensor_shape_pb2 [as 別名]
# 或者: from tensorflow.core.framework.tensor_shape_pb2 import TensorShapeProto [as 別名]
def as_proto(self):
"""Returns this shape as a `TensorShapeProto`."""
if self._dims is None:
return tensor_shape_pb2.TensorShapeProto(unknown_rank=True)
else:
return tensor_shape_pb2.TensorShapeProto(dim=[
tensor_shape_pb2.TensorShapeProto.Dim(
size=-1 if d.value is None else d.value)
for d in self._dims])
示例11: testAttrShape
# 需要導入模塊: from tensorflow.core.framework import tensor_shape_pb2 [as 別名]
# 或者: from tensorflow.core.framework.tensor_shape_pb2 import TensorShapeProto [as 別名]
def testAttrShape(self):
self._add_op("name: 'AttrShape' attr { name: 'a' type: 'shape' }")
op = self._lib.apply_op("AttrShape", a=[5], name="s1")
self.assertProtoEquals("""
name: 's1' op: 'AttrShape'
attr { key: 'a' value { shape { dim { size: 5 } } } }
""", op.node_def)
op = self._lib.apply_op("AttrShape", a=(4, 3, 2), name="s2")
self.assertProtoEquals("""
name: 's2' op: 'AttrShape'
attr { key: 'a' value {
shape { dim { size: 4 } dim { size: 3 } dim { size: 2 } } } }
""", op.node_def)
op = self._lib.apply_op(
"AttrShape", a=tensor_shape.TensorShape([3, 2]), name="s3")
self.assertProtoEquals("""
name: 's3' op: 'AttrShape'
attr { key: 'a' value {
shape { dim { size: 3 } dim { size: 2 } } } }
""", op.node_def)
op = self._lib.apply_op("AttrShape", a=[], name="s4")
self.assertProtoEquals("""
name: 's4' op: 'AttrShape' attr { key: 'a' value { shape { } } }
""", op.node_def)
shape = tensor_shape_pb2.TensorShapeProto()
shape.dim.add().size = 6
shape.dim.add().size = 3
op = self._lib.apply_op("AttrShape", a=shape, name="s5")
self.assertProtoEquals("""
name: 's5' op: 'AttrShape'
attr { key: 'a' value { shape { dim { size: 6 } dim { size: 3 } } } }
""", op.node_def)
# TODO(josh11b): Re-enable this test once we stop promoting scalars to shapes.
# with self.assertRaises(TypeError) as cm:
# self._lib.apply_op("AttrShape", a=5)
# self.assertEqual(str(cm.exception),
# "Don't know how to convert 5 to a TensorShapeProto for "
# "argument 'a'")
with self.assertRaises(TypeError):
self._lib.apply_op("AttrShape", a="ABC")
示例12: testAttrPartialShape
# 需要導入模塊: from tensorflow.core.framework import tensor_shape_pb2 [as 別名]
# 或者: from tensorflow.core.framework.tensor_shape_pb2 import TensorShapeProto [as 別名]
def testAttrPartialShape(self):
self._add_op(
"name: 'AttrPartialShape' attr { name: 'a' type: 'shape' }")
op = self._lib.apply_op("AttrPartialShape", a=[5], name="s1")
self.assertProtoEquals("""
name: 's1' op: 'AttrPartialShape'
attr { key: 'a' value { shape { dim { size: 5 } } } }
""", op.node_def)
op = self._lib.apply_op("AttrPartialShape", a=(4, None, 2), name="s2")
self.assertProtoEquals("""
name: 's2' op: 'AttrPartialShape'
attr { key: 'a' value {
shape { dim { size: 4 } dim { size: -1 } dim { size: 2 } } } }
""", op.node_def)
op = self._lib.apply_op(
"AttrPartialShape", a=tensor_shape.TensorShape([3, None]), name="s3")
self.assertProtoEquals("""
name: 's3' op: 'AttrPartialShape'
attr { key: 'a' value {
shape { dim { size: 3 } dim { size: -1 } } } }
""", op.node_def)
op = self._lib.apply_op("AttrPartialShape", a=[], name="s4")
self.assertProtoEquals("""
name: 's4' op: 'AttrPartialShape'
attr { key: 'a' value { shape { } } }
""", op.node_def)
shape = tensor_shape_pb2.TensorShapeProto()
shape.dim.add().size = -1
shape.dim.add().size = 3
op = self._lib.apply_op("AttrPartialShape", a=shape, name="s5")
self.assertProtoEquals("""
name: 's5' op: 'AttrPartialShape'
attr { key: 'a' value {
shape { dim { size: -1 } dim { size: 3 } } } }
""", op.node_def)
# TODO(ebrevdo): Re-enable once we stop promoting scalars to shapes.
# with self.assertRaises(TypeError) as cm:
# self._lib.apply_op("AttrPartialShape", a=5)
# self.assertEqual(str(cm.exception),
# "Don't know how to convert 5 to a TensorShapeProto for "
# "argument 'a'")
with self.assertRaises(TypeError):
self._lib.apply_op("AttrPartialShape", a="ABC")