當前位置: 首頁>>代碼示例>>Python>>正文


Python tensor_shape_pb2.TensorShapeProto方法代碼示例

本文整理匯總了Python中tensorflow.core.framework.tensor_shape_pb2.TensorShapeProto方法的典型用法代碼示例。如果您正苦於以下問題:Python tensor_shape_pb2.TensorShapeProto方法的具體用法?Python tensor_shape_pb2.TensorShapeProto怎麽用?Python tensor_shape_pb2.TensorShapeProto使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.core.framework.tensor_shape_pb2的用法示例。


在下文中一共展示了tensor_shape_pb2.TensorShapeProto方法的12個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _MakeShape

# 需要導入模塊: from tensorflow.core.framework import tensor_shape_pb2 [as 別名]
# 或者: from tensorflow.core.framework.tensor_shape_pb2 import TensorShapeProto [as 別名]
def _MakeShape(v, arg_name):
  """Convert v into a TensorShapeProto."""
  # Args:
  #   v: A TensorShapeProto, a list of ints, or a tensor_shape.TensorShape.
  #   arg_name: String, for error messages.

  # Returns:
  #   A TensorShapeProto.
  if isinstance(v, tensor_shape_pb2.TensorShapeProto):
    for d in v.dim:
      if d.name:
        logging.warning("Warning: TensorShapeProto with a named dimension: %s",
                        str(v))
        break
    return v
  return tensor_shape.as_shape(v).as_proto() 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:18,代碼來源:op_def_library.py

示例2: ShapeEquals

# 需要導入模塊: from tensorflow.core.framework import tensor_shape_pb2 [as 別名]
# 或者: from tensorflow.core.framework.tensor_shape_pb2 import TensorShapeProto [as 別名]
def ShapeEquals(tensor_proto, shape):
  """Returns True if "tensor_proto" has the given "shape".

  Args:
    tensor_proto: A TensorProto.
    shape: A tensor shape, expressed as a TensorShape, list, or tuple.

  Returns:
    True if "tensor_proto" has the given "shape", otherwise False.

  Raises:
    TypeError: If "tensor_proto" is not a TensorProto, or shape is not a
      TensorShape, list, or tuple.
  """
  if not isinstance(tensor_proto, tensor_pb2.TensorProto):
    raise TypeError("tensor_proto is not a tensor_pb2.TensorProto object")
  if isinstance(shape, tensor_shape_pb2.TensorShapeProto):
    shape = [d.size for d in shape.dim]
  elif not isinstance(shape, (list, tuple)):
    raise TypeError("shape is not a list or tuple")
  tensor_shape_list = [d.size for d in tensor_proto.tensor_shape.dim]
  return all(x == y for x, y in zip(tensor_shape_list, shape)) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:24,代碼來源:tensor_util.py

示例3: testConvertFromProto

# 需要導入模塊: from tensorflow.core.framework import tensor_shape_pb2 [as 別名]
# 或者: from tensorflow.core.framework.tensor_shape_pb2 import TensorShapeProto [as 別名]
def testConvertFromProto(self):
    def make_tensor_shape_proto(shape):
      return tensor_shape_pb2.TensorShapeProto(
          dim=[tensor_shape_pb2.TensorShapeProto.Dim(size=x) for x in shape])
    proto = make_tensor_shape_proto([])
    self.assertEqual(tensor_shape.TensorShape([]),
                     tensor_shape.TensorShape(proto))
    self.assertEqual(tensor_shape.TensorShape([]),
                     tensor_shape.as_shape(proto))

    proto = make_tensor_shape_proto([1, 37, 42])
    self.assertEqual(tensor_shape.TensorShape([1, 37, 42]),
                     tensor_shape.TensorShape(proto))
    self.assertEqual(tensor_shape.TensorShape([1, 37, 42]),
                     tensor_shape.as_shape(proto))

    partial_proto_shape = tensor_shape.as_shape(
        make_tensor_shape_proto([-1, 37, 42]))
    partial_shape = tensor_shape.TensorShape([None, 37, 42])
    self.assertNotEqual(partial_proto_shape, partial_shape)
    self.assertEqual(partial_proto_shape[0].value, None)
    self.assertEqual(partial_proto_shape[1].value, 37)
    self.assertEqual(partial_proto_shape[2].value, 42)
    self.assertTrue(partial_shape.is_compatible_with(partial_proto_shape)) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:26,代碼來源:tensor_shape_test.py

示例4: __init__

# 需要導入模塊: from tensorflow.core.framework import tensor_shape_pb2 [as 別名]
# 或者: from tensorflow.core.framework.tensor_shape_pb2 import TensorShapeProto [as 別名]
def __init__(self, op, value_index, dtype):
    """Creates a new `Output`.

    Args:
      op: An `Operation`. `Operation` that computes this tensor.
      value_index: An `int`. Index of the operation's endpoint that produces
        this tensor.
      dtype: A `DType`. Type of elements stored in this tensor.

    Raises:
      TypeError: If the op is not an `Operation`.
    """
    if not isinstance(op, Operation):
      raise TypeError("op needs to be an Operation: %s" % op)
    self._op = op
    self._value_index = value_index
    self._dtype = dtypes.as_dtype(dtype)
    self._shape = tensor_shape.unknown_shape()
    # List of operations that use this Output as input.  We maintain this list
    # to easily navigate a computation graph.
    self._consumers = []

    # Attributes used for C++ shape inference. Not inspected, only forwarded.
    self._handle_shape = tensor_shape_pb2.TensorShapeProto()
    self._handle_dtype = types_pb2.DT_INVALID 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:27,代碼來源:ops.py

示例5: _MakeShape

# 需要導入模塊: from tensorflow.core.framework import tensor_shape_pb2 [as 別名]
# 或者: from tensorflow.core.framework.tensor_shape_pb2 import TensorShapeProto [as 別名]
def _MakeShape(v, arg_name):
  """Convert v into a TensorShapeProto."""
  # Args:
  #   v: A TensorShapeProto, a list of ints, or a tensor_shape.TensorShape.
  #   arg_name: String, for error messages.

  # Returns:
  #   A TensorShapeProto.
  if isinstance(v, tensor_shape_pb2.TensorShapeProto):
    for d in v.dim:
      if d.name:
        logging.warning("Warning: TensorShapeProto with a named dimension: %s",
                        str(v))
        break
    return v
  try:
    return tensor_shape.as_shape(v).as_proto()
  except TypeError as e:
    raise TypeError("Error converting %s to a TensorShape: %s" % (arg_name, e))
  except ValueError as e:
    raise ValueError("Error converting %s to a TensorShape: %s" % (arg_name, e)) 
開發者ID:PacktPublishing,項目名稱:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代碼行數:23,代碼來源:op_def_library.py

示例6: __init__

# 需要導入模塊: from tensorflow.core.framework import tensor_shape_pb2 [as 別名]
# 或者: from tensorflow.core.framework.tensor_shape_pb2 import TensorShapeProto [as 別名]
def __init__(self, dims):
    """Creates a new TensorShape with the given dimensions.

    Args:
      dims: A list of Dimensions, or None if the shape is unspecified.
        DEPRECATED: A single integer is treated as a singleton list.

    Raises:
      TypeError: If dims cannot be converted to a list of dimensions.
    """
    # TODO(irving): Eliminate the single integer special case.
    if dims is None:
      self._dims = None
    elif isinstance(dims, compat.bytes_or_text_types):
      raise TypeError("A string has ambiguous TensorShape, please wrap in a "
                      "list or convert to an int: %s" % dims)
    elif isinstance(dims, tensor_shape_pb2.TensorShapeProto):
      if dims.unknown_rank:
        self._dims = None
      else:
        self._dims = [
            # Protos store variable-size dimensions as -1
            as_dimension(dim.size if dim.size != -1 else None)
            for dim in dims.dim
        ]
    elif isinstance(dims, TensorShape):
      self._dims = dims.dims
    else:
      try:
        dims_iter = iter(dims)
      except TypeError:
        # Treat as a singleton dimension
        self._dims = [as_dimension(dims)]
      else:
        # Got a list of dimensions
        self._dims = [as_dimension(d) for d in dims_iter] 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:38,代碼來源:tensor_shape.py

示例7: as_proto

# 需要導入模塊: from tensorflow.core.framework import tensor_shape_pb2 [as 別名]
# 或者: from tensorflow.core.framework.tensor_shape_pb2 import TensorShapeProto [as 別名]
def as_proto(self):
    """Returns this shape as a `TensorShapeProto`."""
    if self._dims is None:
      return tensor_shape_pb2.TensorShapeProto(unknown_rank=True)
    else:
      return tensor_shape_pb2.TensorShapeProto(dim=[
          tensor_shape_pb2.TensorShapeProto.Dim(size=-1
                                                if d.value is None else d.value)
          for d in self._dims
      ]) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:12,代碼來源:tensor_shape.py

示例8: TensorShapeProtoToList

# 需要導入模塊: from tensorflow.core.framework import tensor_shape_pb2 [as 別名]
# 或者: from tensorflow.core.framework.tensor_shape_pb2 import TensorShapeProto [as 別名]
def TensorShapeProtoToList(shape):
  """Convert a TensorShape to a list.

  Args:
    shape: A TensorShapeProto.

  Returns:
    List of integers representing the dimensions of the tensor.
  """
  return [dim.size for dim in shape.dim] 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:12,代碼來源:tensor_util.py

示例9: __init__

# 需要導入模塊: from tensorflow.core.framework import tensor_shape_pb2 [as 別名]
# 或者: from tensorflow.core.framework.tensor_shape_pb2 import TensorShapeProto [as 別名]
def __init__(self, dims):
    """Creates a new TensorShape with the given dimensions.

    Args:
      dims: A list of Dimensions, or None if the shape is unspecified.
        DEPRECATED: A single integer is treated as a singleton list.

    Raises:
      TypeError: If dims cannot be converted to a list of dimensions.
    """
    # TODO(irving): Eliminate the single integer special case.
    if dims is None:
      self._dims = None
    elif isinstance(dims, compat.bytes_or_text_types):
      raise TypeError("A string has ambiguous TensorShape, please wrap in a "
                       "list or convert to an int: %s" % dims)
    elif isinstance(dims, tensor_shape_pb2.TensorShapeProto):
      if dims.unknown_rank:
        self._dims = None
      else:
        self._dims = [
            # Protos store variable-size dimensions as -1
            as_dimension(dim.size if dim.size != -1 else None)
            for dim in dims.dim]
    elif isinstance(dims, TensorShape):
      self._dims = dims.dims
    else:
      try:
        dims_iter = iter(dims)
      except TypeError:
        # Treat as a singleton dimension
        self._dims = [as_dimension(dims)]
      else:
        # Got a list of dimensions
        self._dims = [as_dimension(d) for d in dims_iter] 
開發者ID:abhisuri97,項目名稱:auto-alt-text-lambda-api,代碼行數:37,代碼來源:tensor_shape.py

示例10: as_proto

# 需要導入模塊: from tensorflow.core.framework import tensor_shape_pb2 [as 別名]
# 或者: from tensorflow.core.framework.tensor_shape_pb2 import TensorShapeProto [as 別名]
def as_proto(self):
    """Returns this shape as a `TensorShapeProto`."""
    if self._dims is None:
      return tensor_shape_pb2.TensorShapeProto(unknown_rank=True)
    else:
      return tensor_shape_pb2.TensorShapeProto(dim=[
          tensor_shape_pb2.TensorShapeProto.Dim(
              size=-1 if d.value is None else d.value)
          for d in self._dims]) 
開發者ID:abhisuri97,項目名稱:auto-alt-text-lambda-api,代碼行數:11,代碼來源:tensor_shape.py

示例11: testAttrShape

# 需要導入模塊: from tensorflow.core.framework import tensor_shape_pb2 [as 別名]
# 或者: from tensorflow.core.framework.tensor_shape_pb2 import TensorShapeProto [as 別名]
def testAttrShape(self):
    self._add_op("name: 'AttrShape' attr { name: 'a' type: 'shape' }")

    op = self._lib.apply_op("AttrShape", a=[5], name="s1")
    self.assertProtoEquals("""
      name: 's1' op: 'AttrShape'
      attr { key: 'a' value { shape { dim { size: 5 } } } }
      """, op.node_def)

    op = self._lib.apply_op("AttrShape", a=(4, 3, 2), name="s2")
    self.assertProtoEquals("""
      name: 's2' op: 'AttrShape'
      attr { key: 'a' value {
        shape { dim { size: 4 } dim { size: 3 } dim { size: 2 } } } }
      """, op.node_def)

    op = self._lib.apply_op(
        "AttrShape", a=tensor_shape.TensorShape([3, 2]), name="s3")
    self.assertProtoEquals("""
      name: 's3' op: 'AttrShape'
      attr { key: 'a' value {
        shape { dim { size: 3 } dim { size: 2 } } } }
      """, op.node_def)

    op = self._lib.apply_op("AttrShape", a=[], name="s4")
    self.assertProtoEquals("""
      name: 's4' op: 'AttrShape' attr { key: 'a' value { shape { } } }
      """, op.node_def)

    shape = tensor_shape_pb2.TensorShapeProto()
    shape.dim.add().size = 6
    shape.dim.add().size = 3
    op = self._lib.apply_op("AttrShape", a=shape, name="s5")
    self.assertProtoEquals("""
      name: 's5' op: 'AttrShape'
      attr { key: 'a' value { shape { dim { size: 6 } dim { size: 3 } } } }
      """, op.node_def)

    # TODO(josh11b): Re-enable this test once we stop promoting scalars to shapes.
    # with self.assertRaises(TypeError) as cm:
    #   self._lib.apply_op("AttrShape", a=5)
    # self.assertEqual(str(cm.exception),
    #                  "Don't know how to convert 5 to a TensorShapeProto for "
    #                  "argument 'a'")

    with self.assertRaises(TypeError):
      self._lib.apply_op("AttrShape", a="ABC") 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:49,代碼來源:op_def_library_test.py

示例12: testAttrPartialShape

# 需要導入模塊: from tensorflow.core.framework import tensor_shape_pb2 [as 別名]
# 或者: from tensorflow.core.framework.tensor_shape_pb2 import TensorShapeProto [as 別名]
def testAttrPartialShape(self):
    self._add_op(
        "name: 'AttrPartialShape' attr { name: 'a' type: 'shape' }")

    op = self._lib.apply_op("AttrPartialShape", a=[5], name="s1")
    self.assertProtoEquals("""
      name: 's1' op: 'AttrPartialShape'
      attr { key: 'a' value { shape { dim { size: 5 } } } }
      """, op.node_def)

    op = self._lib.apply_op("AttrPartialShape", a=(4, None, 2), name="s2")
    self.assertProtoEquals("""
      name: 's2' op: 'AttrPartialShape'
      attr { key: 'a' value {
        shape { dim { size: 4 } dim { size: -1 } dim { size: 2 } } } }
      """, op.node_def)

    op = self._lib.apply_op(
        "AttrPartialShape", a=tensor_shape.TensorShape([3, None]), name="s3")
    self.assertProtoEquals("""
      name: 's3' op: 'AttrPartialShape'
      attr { key: 'a' value {
        shape { dim { size: 3 } dim { size: -1 } } } }
      """, op.node_def)

    op = self._lib.apply_op("AttrPartialShape", a=[], name="s4")
    self.assertProtoEquals("""
      name: 's4' op: 'AttrPartialShape'
      attr { key: 'a' value { shape { } } }
      """, op.node_def)

    shape = tensor_shape_pb2.TensorShapeProto()
    shape.dim.add().size = -1
    shape.dim.add().size = 3
    op = self._lib.apply_op("AttrPartialShape", a=shape, name="s5")
    self.assertProtoEquals("""
      name: 's5' op: 'AttrPartialShape'
      attr { key: 'a' value {
        shape { dim { size: -1 } dim { size: 3 } } } }
      """, op.node_def)

    # TODO(ebrevdo): Re-enable once we stop promoting scalars to shapes.
    # with self.assertRaises(TypeError) as cm:
    #   self._lib.apply_op("AttrPartialShape", a=5)
    # self.assertEqual(str(cm.exception),
    #                  "Don't know how to convert 5 to a TensorShapeProto for "
    #                  "argument 'a'")

    with self.assertRaises(TypeError):
      self._lib.apply_op("AttrPartialShape", a="ABC") 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:52,代碼來源:op_def_library_test.py


注:本文中的tensorflow.core.framework.tensor_shape_pb2.TensorShapeProto方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。