當前位置: 首頁>>代碼示例>>Python>>正文


Python tensor_pb2.TensorProto方法代碼示例

本文整理匯總了Python中tensorflow.core.framework.tensor_pb2.TensorProto方法的典型用法代碼示例。如果您正苦於以下問題:Python tensor_pb2.TensorProto方法的具體用法?Python tensor_pb2.TensorProto怎麽用?Python tensor_pb2.TensorProto使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.core.framework.tensor_pb2的用法示例。


在下文中一共展示了tensor_pb2.TensorProto方法的6個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: ShapeEquals

# 需要導入模塊: from tensorflow.core.framework import tensor_pb2 [as 別名]
# 或者: from tensorflow.core.framework.tensor_pb2 import TensorProto [as 別名]
def ShapeEquals(tensor_proto, shape):
  """Returns True if "tensor_proto" has the given "shape".

  Args:
    tensor_proto: A TensorProto.
    shape: A tensor shape, expressed as a TensorShape, list, or tuple.

  Returns:
    True if "tensor_proto" has the given "shape", otherwise False.

  Raises:
    TypeError: If "tensor_proto" is not a TensorProto, or shape is not a
      TensorShape, list, or tuple.
  """
  if not isinstance(tensor_proto, tensor_pb2.TensorProto):
    raise TypeError("tensor_proto is not a tensor_pb2.TensorProto object")
  if isinstance(shape, tensor_shape_pb2.TensorShapeProto):
    shape = [d.size for d in shape.dim]
  elif not isinstance(shape, (list, tuple)):
    raise TypeError("shape is not a list or tuple")
  tensor_shape_list = [d.size for d in tensor_proto.tensor_shape.dim]
  return all(x == y for x, y in zip(tensor_shape_list, shape)) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:24,代碼來源:tensor_util.py

示例2: _prepare_output_as_AppendArrayToTensorProto

# 需要導入模塊: from tensorflow.core.framework import tensor_pb2 [as 別名]
# 或者: from tensorflow.core.framework.tensor_pb2 import TensorProto [as 別名]
def _prepare_output_as_AppendArrayToTensorProto(
        inference_output,
        model_available_outputs):
    response = predict_pb2.PredictResponse()
    for response_output_name, model_output_name in \
            model_available_outputs.items():
        if model_output_name in inference_output:
            dtype = dtypes.as_dtype(inference_output[model_output_name].dtype)
            output_tensor = tensor_pb2.TensorProto(
                dtype=dtype.as_datatype_enum,
                tensor_shape=tensor_shape.as_shape(
                    inference_output[model_output_name].shape).as_proto())
            result = inference_output[model_output_name].flatten()
            tensor_util._NP_TO_APPEND_FN[dtype.as_numpy_dtype](output_tensor,
                                                               result)
            response.outputs[response_output_name].CopyFrom(output_tensor)
    return response 
開發者ID:openvinotoolkit,項目名稱:model_server,代碼行數:19,代碼來源:predict_utils.py

示例3: _MakeTensor

# 需要導入模塊: from tensorflow.core.framework import tensor_pb2 [as 別名]
# 或者: from tensorflow.core.framework.tensor_pb2 import TensorProto [as 別名]
def _MakeTensor(v, arg_name):
  """Ensure v is a TensorProto."""
  if isinstance(v, tensor_pb2.TensorProto):
    return v
  raise TypeError(
      "Don't know how to convert %s to a TensorProto for argument '%s'" %
      (repr(v), arg_name)) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:9,代碼來源:op_def_library.py

示例4: _create_const_node

# 需要導入模塊: from tensorflow.core.framework import tensor_pb2 [as 別名]
# 或者: from tensorflow.core.framework.tensor_pb2 import TensorProto [as 別名]
def _create_const_node(self, name, value):
        tensor_content = value.tobytes()
        dt = tf.as_dtype(value.dtype).as_datatype_enum
        tensor_shape = TensorShapeProto(
            dim=[TensorShapeProto.Dim(size=s) for s in value.shape])
        tensor_proto = TensorProto(tensor_content=tensor_content,
                                   tensor_shape=tensor_shape,
                                   dtype=dt)
        node = tf.compat.v1.NodeDef(name=name, op='Const',
                                    attr={'value': tf.compat.v1.AttrValue(tensor=tensor_proto),
                                          'dtype': tf.compat.v1.AttrValue(type=dt)})
        return node 
開發者ID:sony,項目名稱:nnabla,代碼行數:14,代碼來源:refine_graph.py

示例5: make_const_node

# 需要導入模塊: from tensorflow.core.framework import tensor_pb2 [as 別名]
# 或者: from tensorflow.core.framework.tensor_pb2 import TensorProto [as 別名]
def make_const_node(data: Tensor, name: str = None) -> NodeDef:
    """
    Create a TF graph node containing a constant value.
    The resulting node is equivalent to using `tf.constant` on the
    default graph.

    Args:
        data: Numpy-array containing the data, shape, and datatype
        name: Optional name of the node

    Returns:
        Graph node for adding to a TF Graph instance
    """
    dtype = as_dtype(data.dtype).as_datatype_enum
    tensor_content = data.tobytes()
    tensor_dim = [TensorShapeProto.Dim(size=size) for size in data.shape]
    tensor_shape = TensorShapeProto(dim=tensor_dim)
    tensor_proto = TensorProto(tensor_content=tensor_content,
                               tensor_shape=tensor_shape,
                               dtype=dtype)
    node_def = NodeDef(op='Const', name=name or 'Const',
                       attr={
                           'value': AttrValue(tensor=tensor_proto),
                           'dtype': AttrValue(type=dtype)
                        })
    return node_def 
開發者ID:patlevin,項目名稱:tfjs-to-tf,代碼行數:28,代碼來源:graph_rewrite_util.py

示例6: make_tensor

# 需要導入模塊: from tensorflow.core.framework import tensor_pb2 [as 別名]
# 或者: from tensorflow.core.framework.tensor_pb2 import TensorProto [as 別名]
def make_tensor(v, arg_name):
  """Ensure v is a TensorProto."""
  if isinstance(v, tensor_pb2.TensorProto):
    return v
  elif isinstance(v, six.string_types):
    pb = tensor_pb2.TensorProto()
    text_format.Merge(v, pb)
    return pb
  raise TypeError(
      "Don't know how to convert %s to a TensorProto for argument '%s'." %
      (repr(v), arg_name)) 
開發者ID:PacktPublishing,項目名稱:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代碼行數:13,代碼來源:execute.py


注:本文中的tensorflow.core.framework.tensor_pb2.TensorProto方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。