當前位置: 首頁>>代碼示例>>Python>>正文


Python tpu_optimizer.CrossShardOptimizer方法代碼示例

本文整理匯總了Python中tensorflow.contrib.tpu.python.tpu.tpu_optimizer.CrossShardOptimizer方法的典型用法代碼示例。如果您正苦於以下問題:Python tpu_optimizer.CrossShardOptimizer方法的具體用法?Python tpu_optimizer.CrossShardOptimizer怎麽用?Python tpu_optimizer.CrossShardOptimizer使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.contrib.tpu.python.tpu.tpu_optimizer的用法示例。


在下文中一共展示了tpu_optimizer.CrossShardOptimizer方法的1個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: get_train_op

# 需要導入模塊: from tensorflow.contrib.tpu.python.tpu import tpu_optimizer [as 別名]
# 或者: from tensorflow.contrib.tpu.python.tpu.tpu_optimizer import CrossShardOptimizer [as 別名]
def get_train_op(self, loss):
    """Creates a training op.

    Args:
      loss: A float32 `Tensor` representing the total training loss.
    Returns:
      train_op: A slim.learning.create_train_op train_op.
    Raises:
      ValueError: If specified optimizer isn't supported.
    """
    # Get variables to train (defined in subclass).
    assert self.variables_to_train

    # Define a learning rate schedule.
    decay_steps = self._config.learning.decay_steps
    decay_factor = self._config.learning.decay_factor
    learning_rate = float(self._config.learning.learning_rate)

    # Define a learning rate schedule.
    global_step = slim.get_or_create_global_step()
    learning_rate = tf.train.exponential_decay(
        learning_rate,
        global_step,
        decay_steps,
        decay_factor,
        staircase=True)

    # Create an optimizer.
    opt_type = self._config.learning.optimizer
    if opt_type == 'adam':
      opt = tf.train.AdamOptimizer(learning_rate)
    elif opt_type == 'momentum':
      opt = tf.train.MomentumOptimizer(learning_rate, 0.9)
    elif opt_type == 'rmsprop':
      opt = tf.train.RMSPropOptimizer(learning_rate, momentum=0.9,
                                      epsilon=1.0, decay=0.9)
    else:
      raise ValueError('Unsupported optimizer %s' % opt_type)

    if self._config.use_tpu:
      opt = tpu_optimizer.CrossShardOptimizer(opt)

    # Create a training op.
    # train_op = opt.minimize(loss, var_list=self.variables_to_train)
    # Create a training op.
    train_op = slim.learning.create_train_op(
        loss,
        optimizer=opt,
        variables_to_train=self.variables_to_train,
        update_ops=tf.get_collection(tf.GraphKeys.UPDATE_OPS))

    return train_op 
開發者ID:rky0930,項目名稱:yolo_v2,代碼行數:54,代碼來源:base_estimator.py


注:本文中的tensorflow.contrib.tpu.python.tpu.tpu_optimizer.CrossShardOptimizer方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。