當前位置: 首頁>>代碼示例>>Python>>正文


Python tpu_estimator.TPUEstimatorSpec方法代碼示例

本文整理匯總了Python中tensorflow.contrib.tpu.python.tpu.tpu_estimator.TPUEstimatorSpec方法的典型用法代碼示例。如果您正苦於以下問題:Python tpu_estimator.TPUEstimatorSpec方法的具體用法?Python tpu_estimator.TPUEstimatorSpec怎麽用?Python tpu_estimator.TPUEstimatorSpec使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.contrib.tpu.python.tpu.tpu_estimator的用法示例。


在下文中一共展示了tpu_estimator.TPUEstimatorSpec方法的3個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: estimator_spec_predict

# 需要導入模塊: from tensorflow.contrib.tpu.python.tpu import tpu_estimator [as 別名]
# 或者: from tensorflow.contrib.tpu.python.tpu.tpu_estimator import TPUEstimatorSpec [as 別名]
def estimator_spec_predict(self, features, mesh, mesh_impl, use_tpu):
    mtf_samples = mtf.anonymize(self.sample(features, mesh))
    lowering = mtf.Lowering(mesh.graph, {mesh: mesh_impl})
    outputs = lowering.export_to_tf_tensor(mtf_samples)
    if self.has_input:
      ndims = len(outputs.shape.as_list())
      actual_batch_size = tf.shape(features["inputs"])[0]
      outputs = tf.slice(
          outputs, [0] * ndims, [actual_batch_size] + [-1] * (ndims - 1))
    predictions = {
        "outputs": outputs
    }
    if features.get("infer_targets") is not None:
      predictions["infer_targets"] = features["infer_targets"]

    if features.get("inputs") is not None:
      predictions["inputs"] = features["inputs"]

    if use_tpu:
      t2t_model.remove_summaries()
      return tpu_estimator.TPUEstimatorSpec(
          mode=tf.estimator.ModeKeys.PREDICT,
          predictions=predictions,
          prediction_hooks=[mtf.MtfRestoreHook(lowering)])
    else:
      return tf.estimator.EstimatorSpec(
          tf.estimator.ModeKeys.PREDICT,
          predictions=predictions,
          prediction_hooks=[mtf.MtfRestoreHook(lowering)]) 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:31,代碼來源:mtf_model.py

示例2: estimator_spec_eval

# 需要導入模塊: from tensorflow.contrib.tpu.python.tpu import tpu_estimator [as 別名]
# 或者: from tensorflow.contrib.tpu.python.tpu.tpu_estimator import TPUEstimatorSpec [as 別名]
def estimator_spec_eval(
      self, features, logits, labels, loss, restore_hook, use_tpu):
    """Construct EstimatorSpec for EVAL mode."""
    hparams = self.hparams
    problem = hparams.problem
    if logits.get_shape().ndims == 3:
      logits = tf.expand_dims(tf.expand_dims(logits, 2), 3)
    eval_metrics_fns = metrics.create_evaluation_metrics([problem], hparams)

    if use_tpu:
      def metric_fn(tf_logits, labels):
        with tf.device("cpu:0"), mtf.utils.outside_all_rewrites():
          eval_metrics = {}
          for metric_name, metric_fn in six.iteritems(eval_metrics_fns):
            if metric_name.split("/")[-1] not in t2t_model.TPU_METRIC_BLACKLIST:
              eval_metrics[metric_name] = metric_fn(
                  tf_logits, None, tf.identity(labels))
          return eval_metrics
      return tpu_estimator.TPUEstimatorSpec(
          tf.estimator.ModeKeys.EVAL,
          evaluation_hooks=[restore_hook],
          loss=loss,
          eval_metrics=(metric_fn, [logits, labels]))
    else:
      eval_metrics = {}
      predictions = {"predictions": logits}
      for metric_name, metric_fn in six.iteritems(eval_metrics_fns):
        eval_metrics[metric_name] = metric_fn(logits, features,
                                              features["targets"])

      return tf.estimator.EstimatorSpec(
          tf.estimator.ModeKeys.EVAL,
          predictions=predictions,
          eval_metric_ops=eval_metrics,
          evaluation_hooks=[restore_hook],
          loss=loss) 
開發者ID:mlperf,項目名稱:training_results_v0.5,代碼行數:38,代碼來源:mtf_model.py

示例3: estimator_spec_eval

# 需要導入模塊: from tensorflow.contrib.tpu.python.tpu import tpu_estimator [as 別名]
# 或者: from tensorflow.contrib.tpu.python.tpu.tpu_estimator import TPUEstimatorSpec [as 別名]
def estimator_spec_eval(
      self, features, logits, labels, loss, restore_hook, use_tpu):
    """Construct EstimatorSpec for EVAL mode."""
    hparams = self.hparams
    problem = hparams.problem
    if logits.get_shape().ndims == 3:
      logits = tf.expand_dims(tf.expand_dims(logits, 2), 3)

    # Support for multiproblem
    task_list = [problem]
    if hasattr(problem, "task_list"):
      task_list = problem.task_list

    eval_metrics_fns = metrics.create_evaluation_metrics(task_list, hparams)

    if use_tpu:
      def metric_fn(tf_logits, labels):
        with tf.device("cpu:0"), mtf.utils.outside_all_rewrites():
          eval_metrics = {}
          for metric_name, metric_fn in six.iteritems(eval_metrics_fns):
            if metric_name.split("/")[-1] not in t2t_model.TPU_METRIC_BLACKLIST:
              eval_metrics[metric_name] = metric_fn(
                  tf_logits, None, tf.identity(labels))
          return eval_metrics
      return tpu_estimator.TPUEstimatorSpec(
          tf.estimator.ModeKeys.EVAL,
          evaluation_hooks=[restore_hook],
          loss=loss,
          eval_metrics=(metric_fn, [logits, labels]))
    else:
      eval_metrics = {}
      predictions = {"predictions": logits}
      for metric_name, metric_fn in six.iteritems(eval_metrics_fns):
        eval_metrics[metric_name] = metric_fn(logits, features,
                                              features["targets"])

      return tf.estimator.EstimatorSpec(
          tf.estimator.ModeKeys.EVAL,
          predictions=predictions,
          eval_metric_ops=eval_metrics,
          evaluation_hooks=[restore_hook],
          loss=loss) 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:44,代碼來源:mtf_model.py


注:本文中的tensorflow.contrib.tpu.python.tpu.tpu_estimator.TPUEstimatorSpec方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。