當前位置: 首頁>>代碼示例>>Python>>正文


Python tpu_estimator.TPUEstimator方法代碼示例

本文整理匯總了Python中tensorflow.contrib.tpu.python.tpu.tpu_estimator.TPUEstimator方法的典型用法代碼示例。如果您正苦於以下問題:Python tpu_estimator.TPUEstimator方法的具體用法?Python tpu_estimator.TPUEstimator怎麽用?Python tpu_estimator.TPUEstimator使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.contrib.tpu.python.tpu.tpu_estimator的用法示例。


在下文中一共展示了tpu_estimator.TPUEstimator方法的6個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_create_tpu_estimator_and_inputs

# 需要導入模塊: from tensorflow.contrib.tpu.python.tpu import tpu_estimator [as 別名]
# 或者: from tensorflow.contrib.tpu.python.tpu.tpu_estimator import TPUEstimator [as 別名]
def test_create_tpu_estimator_and_inputs(self):
    """Tests that number of train/eval defaults to config values."""

    run_config = tpu_config.RunConfig()
    hparams = model_hparams.create_hparams(
        hparams_overrides='load_pretrained=false')
    pipeline_config_path = get_pipeline_config_path(MODEL_NAME_FOR_TEST)
    train_steps = 20
    train_and_eval_dict = model_lib.create_estimator_and_inputs(
        run_config,
        hparams,
        pipeline_config_path,
        train_steps=train_steps,
        use_tpu_estimator=True)
    estimator = train_and_eval_dict['estimator']
    train_steps = train_and_eval_dict['train_steps']

    self.assertIsInstance(estimator, tpu_estimator.TPUEstimator)
    self.assertEqual(20, train_steps) 
開發者ID:ahmetozlu,項目名稱:vehicle_counting_tensorflow,代碼行數:21,代碼來源:model_lib_test.py

示例2: test_create_tpu_estimator_and_inputs

# 需要導入模塊: from tensorflow.contrib.tpu.python.tpu import tpu_estimator [as 別名]
# 或者: from tensorflow.contrib.tpu.python.tpu.tpu_estimator import TPUEstimator [as 別名]
def test_create_tpu_estimator_and_inputs(self):
    """Tests that number of train/eval defaults to config values."""

    run_config = tpu_config.RunConfig()
    hparams = model_hparams.create_hparams(
        hparams_overrides='load_pretrained=false')
    pipeline_config_path = get_pipeline_config_path(MODEL_NAME_FOR_TEST)
    train_steps = 20
    eval_steps = 10
    train_and_eval_dict = model_lib.create_estimator_and_inputs(
        run_config,
        hparams,
        pipeline_config_path,
        train_steps=train_steps,
        eval_steps=eval_steps,
        use_tpu_estimator=True)
    estimator = train_and_eval_dict['estimator']
    train_steps = train_and_eval_dict['train_steps']
    eval_steps = train_and_eval_dict['eval_steps']

    self.assertIsInstance(estimator, tpu_estimator.TPUEstimator)
    self.assertEqual(20, train_steps)
    self.assertEqual(10, eval_steps) 
開發者ID:ambakick,項目名稱:Person-Detection-and-Tracking,代碼行數:25,代碼來源:model_lib_test.py

示例3: _get_tpu_estimator

# 需要導入模塊: from tensorflow.contrib.tpu.python.tpu import tpu_estimator [as 別名]
# 或者: from tensorflow.contrib.tpu.python.tpu.tpu_estimator import TPUEstimator [as 別名]
def _get_tpu_estimator():
    tpu_cluster_resolver = contrib_cluster_resolver.TPUClusterResolver(
        FLAGS.tpu_name, zone=None, project=None)
    tpu_grpc_url = tpu_cluster_resolver.get_master()

    run_config = contrib_tpu_python_tpu_tpu_config.RunConfig(
        master=tpu_grpc_url,
        evaluation_master=tpu_grpc_url,
        model_dir=FLAGS.work_dir,
        save_checkpoints_steps=max(1000, FLAGS.iterations_per_loop),
        save_summary_steps=FLAGS.summary_steps,
        keep_checkpoint_max=FLAGS.keep_checkpoint_max,
        session_config=tf.ConfigProto(
            allow_soft_placement=True, log_device_placement=True),
        tpu_config=contrib_tpu_python_tpu_tpu_config.TPUConfig(
            iterations_per_loop=FLAGS.iterations_per_loop,
            num_shards=FLAGS.num_tpu_cores,
            per_host_input_for_training=contrib_tpu_python_tpu_tpu_config.InputPipelineConfig.PER_HOST_V2))

    return contrib_tpu_python_tpu_tpu_estimator.TPUEstimator(
        use_tpu=FLAGS.use_tpu,
        model_fn=model_fn,
        config=run_config,
        train_batch_size=FLAGS.train_batch_size * FLAGS.num_tpu_cores,
        eval_batch_size=FLAGS.train_batch_size * FLAGS.num_tpu_cores,
        params=FLAGS.flag_values_dict()) 
開發者ID:mlperf,項目名稱:training,代碼行數:28,代碼來源:dual_net.py

示例4: testTrainingPipeline

# 需要導入模塊: from tensorflow.contrib.tpu.python.tpu import tpu_estimator [as 別名]
# 或者: from tensorflow.contrib.tpu.python.tpu.tpu_estimator import TPUEstimator [as 別名]
def testTrainingPipeline(self, training_method):
    output_directory = '/tmp/'

    g = tf.Graph()
    with g.as_default():

      dataset = self._retrieve_data(is_training=False, data_dir=False)

      FLAGS.transpose_input = False
      FLAGS.use_tpu = False
      FLAGS.mode = 'train'
      FLAGS.mask_init_method = 'random'
      FLAGS.precision = 'float32'
      FLAGS.train_steps = 1
      FLAGS.train_batch_size = 1
      FLAGS.eval_batch_size = 1
      FLAGS.steps_per_eval = 1
      FLAGS.model_architecture = 'resnet'

      params = {}
      params['output_dir'] = output_directory
      params['training_method'] = training_method
      params['use_tpu'] = False
      set_lr_schedule()

      run_config = tpu_config.RunConfig(
          master=None,
          model_dir=None,
          save_checkpoints_steps=1,
          tpu_config=tpu_config.TPUConfig(iterations_per_loop=1, num_shards=1))

      classifier = tpu_estimator.TPUEstimator(
          use_tpu=False,
          model_fn=resnet_model_fn_w_pruning,
          params=params,
          config=run_config,
          train_batch_size=1,
          eval_batch_size=1)

      classifier.train(input_fn=dataset.input_fn, max_steps=1) 
開發者ID:google-research,項目名稱:rigl,代碼行數:42,代碼來源:train_test.py

示例5: _build_estimator

# 需要導入模塊: from tensorflow.contrib.tpu.python.tpu import tpu_estimator [as 別名]
# 或者: from tensorflow.contrib.tpu.python.tpu.tpu_estimator import TPUEstimator [as 別名]
def _build_estimator(self, is_training):
    """Returns an Estimator object.

    Args:
      is_training: Boolean, whether or not we're in training mode.

    Returns:
      A tf.estimator.Estimator.
    """
    config = self._config
    save_checkpoints_steps = config.logging.checkpoint.save_checkpoints_steps
    keep_checkpoint_max = self._config.logging.checkpoint.num_to_keep
    if is_training and config.use_tpu:
      iterations = config.tpu.iterations
      num_shards = config.tpu.num_shards
      run_config = tpu_config.RunConfig(
          save_checkpoints_secs=None,
          save_checkpoints_steps=save_checkpoints_steps,
          keep_checkpoint_max=keep_checkpoint_max,
          master=FLAGS.master,
          evaluation_master=FLAGS.master,
          model_dir=self._logdir,
          tpu_config=tpu_config.TPUConfig(
              iterations_per_loop=iterations,
              num_shards=num_shards,
              per_host_input_for_training=num_shards <= 8),
          tf_random_seed=FLAGS.tf_random_seed)

      batch_size = config.data.batch_size
      return tpu_estimator.TPUEstimator(
          model_fn=self._get_model_fn(),
          config=run_config,
          use_tpu=True,
          train_batch_size=batch_size,
          eval_batch_size=batch_size)
    else:
      run_config = tf.estimator.RunConfig().replace(
          model_dir=self._logdir,
          save_checkpoints_steps=save_checkpoints_steps,
          keep_checkpoint_max=keep_checkpoint_max,
          tf_random_seed=FLAGS.tf_random_seed)
      return tf.estimator.Estimator(
          model_fn=self._get_model_fn(),
          config=run_config) 
開發者ID:rky0930,項目名稱:yolo_v2,代碼行數:46,代碼來源:base_estimator.py

示例6: tpu_test_from_params

# 需要導入模塊: from tensorflow.contrib.tpu.python.tpu import tpu_estimator [as 別名]
# 或者: from tensorflow.contrib.tpu.python.tpu.tpu_estimator import TPUEstimator [as 別名]
def tpu_test_from_params(params, test_args, use_tpu=False):
    """
    Main tpu testing interface function, called by test_from_params in tfutils.test.
    See the doc string there for info.
    """

    # use this for tpu and estimator logging
    tf.logging.set_verbosity(tf.logging.INFO)
    # For convenience, use list of dicts instead of dict of lists
    _params = [{key: value[i] for (key, value) in params.items()}
               for i in range(len(params['model_params']))]
    _ttargs = [{key: value[i] for (key, value) in test_args.items()}
               for i in range(len(params['model_params']))]

    param = _params[0]
    ttarg = _ttargs[0]
    # Support only single model
    assert(len(_params) == 1)

    model_params = param['model_params']
    validation_params = param['validation_params']
    save_params = param['save_params']

    # store a dictionary of estimators, one for each validation params target
    # since may have a different set of eval steps to run on tpu
    # if dict of estimators not feasible, can just create one single estimator
    # and run its predict method multiple times on the same data function in test_estimator (I think)
    cls_dict = {}
    for valid_k in validation_params.keys():
        # set up estimator func
        valid_target_parameter = validation_params[valid_k]
        estimator_fn, params_to_pass = create_test_estimator_fn(use_tpu=use_tpu, 
                                           model_params=model_params,
                                           target_params=valid_target_parameter)
        validation_data_params = valid_target_parameter['data_params']
        eval_val_steps = valid_target_parameter['num_steps']

        if use_tpu:
            # grab tpu name and gcp, etc from model params
            m_config = create_test_tpu_config(model_dir=save_params.get('cache_dir', ''),
                                         eval_steps=eval_val_steps,
                                         tpu_name=model_params.get('tpu_name', None), 
                                         gcp_project=model_params.get('gcp_project', None), 
                                         tpu_zone=model_params.get('tpu_zone', DEFAULT_TPU_ZONE), 
                                         num_shards=model_params.get('num_shards', DEFAULT_NUM_SHARDS),
                                         iterations_per_loop=model_params.get('iterations_per_loop', DEFAULT_ITERATIONS_PER_LOOP))

            estimator_classifier = tpu_estimator.TPUEstimator(
                                        use_tpu=True,
                                        model_fn=estimator_fn,
                                        config=m_config,
                                        train_batch_size=validation_data_params['batch_size'],
                                        predict_batch_size=validation_data_params['batch_size'],
                                        params=params_to_pass)

        else:
            estimator_classifier = tf.estimator.Estimator(model_fn=estimator_fn, params=params_to_pass)

        cls_dict[valid_k] = estimator_classifier
    return test_estimator(cls_dict=cls_dict, param=param, ttarg=ttarg) 
開發者ID:neuroailab,項目名稱:tfutils,代碼行數:62,代碼來源:tpu_test.py


注:本文中的tensorflow.contrib.tpu.python.tpu.tpu_estimator.TPUEstimator方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。