本文整理匯總了Python中tensorflow.contrib.tpu.python.tpu.tpu_config.RunConfig方法的典型用法代碼示例。如果您正苦於以下問題:Python tpu_config.RunConfig方法的具體用法?Python tpu_config.RunConfig怎麽用?Python tpu_config.RunConfig使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.contrib.tpu.python.tpu.tpu_config
的用法示例。
在下文中一共展示了tpu_config.RunConfig方法的12個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_create_estimator_and_inputs
# 需要導入模塊: from tensorflow.contrib.tpu.python.tpu import tpu_config [as 別名]
# 或者: from tensorflow.contrib.tpu.python.tpu.tpu_config import RunConfig [as 別名]
def test_create_estimator_and_inputs(self):
"""Tests that Estimator and input function are constructed correctly."""
run_config = tf.estimator.RunConfig()
hparams = model_hparams.create_hparams(
hparams_overrides='load_pretrained=false')
pipeline_config_path = get_pipeline_config_path(MODEL_NAME_FOR_TEST)
train_steps = 20
train_and_eval_dict = model_lib.create_estimator_and_inputs(
run_config,
hparams,
pipeline_config_path,
train_steps=train_steps)
estimator = train_and_eval_dict['estimator']
train_steps = train_and_eval_dict['train_steps']
self.assertIsInstance(estimator, tf.estimator.Estimator)
self.assertEqual(20, train_steps)
self.assertIn('train_input_fn', train_and_eval_dict)
self.assertIn('eval_input_fns', train_and_eval_dict)
self.assertIn('eval_on_train_input_fn', train_and_eval_dict)
示例2: test_create_tpu_estimator_and_inputs
# 需要導入模塊: from tensorflow.contrib.tpu.python.tpu import tpu_config [as 別名]
# 或者: from tensorflow.contrib.tpu.python.tpu.tpu_config import RunConfig [as 別名]
def test_create_tpu_estimator_and_inputs(self):
"""Tests that number of train/eval defaults to config values."""
run_config = tpu_config.RunConfig()
hparams = model_hparams.create_hparams(
hparams_overrides='load_pretrained=false')
pipeline_config_path = get_pipeline_config_path(MODEL_NAME_FOR_TEST)
train_steps = 20
train_and_eval_dict = model_lib.create_estimator_and_inputs(
run_config,
hparams,
pipeline_config_path,
train_steps=train_steps,
use_tpu_estimator=True)
estimator = train_and_eval_dict['estimator']
train_steps = train_and_eval_dict['train_steps']
self.assertIsInstance(estimator, tpu_estimator.TPUEstimator)
self.assertEqual(20, train_steps)
示例3: test_create_estimator_and_inputs
# 需要導入模塊: from tensorflow.contrib.tpu.python.tpu import tpu_config [as 別名]
# 或者: from tensorflow.contrib.tpu.python.tpu.tpu_config import RunConfig [as 別名]
def test_create_estimator_and_inputs(self):
"""Tests that Estimator and input function are constructed correctly."""
run_config = tf.estimator.RunConfig()
hparams = model_hparams.create_hparams(
hparams_overrides='load_pretrained=false')
pipeline_config_path = get_pipeline_config_path(MODEL_NAME_FOR_TEST)
train_steps = 20
eval_steps = 10
train_and_eval_dict = model_lib.create_estimator_and_inputs(
run_config,
hparams,
pipeline_config_path,
train_steps=train_steps,
eval_steps=eval_steps)
estimator = train_and_eval_dict['estimator']
train_steps = train_and_eval_dict['train_steps']
eval_steps = train_and_eval_dict['eval_steps']
self.assertIsInstance(estimator, tf.estimator.Estimator)
self.assertEqual(20, train_steps)
self.assertEqual(10, eval_steps)
self.assertIn('train_input_fn', train_and_eval_dict)
self.assertIn('eval_input_fn', train_and_eval_dict)
self.assertIn('eval_on_train_input_fn', train_and_eval_dict)
示例4: test_create_estimator_with_default_train_eval_steps
# 需要導入模塊: from tensorflow.contrib.tpu.python.tpu import tpu_config [as 別名]
# 或者: from tensorflow.contrib.tpu.python.tpu.tpu_config import RunConfig [as 別名]
def test_create_estimator_with_default_train_eval_steps(self):
"""Tests that number of train/eval defaults to config values."""
run_config = tf.estimator.RunConfig()
hparams = model_hparams.create_hparams(
hparams_overrides='load_pretrained=false')
pipeline_config_path = get_pipeline_config_path(MODEL_NAME_FOR_TEST)
configs = config_util.get_configs_from_pipeline_file(pipeline_config_path)
config_train_steps = configs['train_config'].num_steps
config_eval_steps = configs['eval_config'].num_examples
train_and_eval_dict = model_lib.create_estimator_and_inputs(
run_config, hparams, pipeline_config_path)
estimator = train_and_eval_dict['estimator']
train_steps = train_and_eval_dict['train_steps']
eval_steps = train_and_eval_dict['eval_steps']
self.assertIsInstance(estimator, tf.estimator.Estimator)
self.assertEqual(config_train_steps, train_steps)
self.assertEqual(config_eval_steps, eval_steps)
示例5: test_create_tpu_estimator_and_inputs
# 需要導入模塊: from tensorflow.contrib.tpu.python.tpu import tpu_config [as 別名]
# 或者: from tensorflow.contrib.tpu.python.tpu.tpu_config import RunConfig [as 別名]
def test_create_tpu_estimator_and_inputs(self):
"""Tests that number of train/eval defaults to config values."""
run_config = tpu_config.RunConfig()
hparams = model_hparams.create_hparams(
hparams_overrides='load_pretrained=false')
pipeline_config_path = get_pipeline_config_path(MODEL_NAME_FOR_TEST)
train_steps = 20
eval_steps = 10
train_and_eval_dict = model_lib.create_estimator_and_inputs(
run_config,
hparams,
pipeline_config_path,
train_steps=train_steps,
eval_steps=eval_steps,
use_tpu_estimator=True)
estimator = train_and_eval_dict['estimator']
train_steps = train_and_eval_dict['train_steps']
eval_steps = train_and_eval_dict['eval_steps']
self.assertIsInstance(estimator, tpu_estimator.TPUEstimator)
self.assertEqual(20, train_steps)
self.assertEqual(10, eval_steps)
示例6: test_create_estimator_with_default_train_eval_steps
# 需要導入模塊: from tensorflow.contrib.tpu.python.tpu import tpu_config [as 別名]
# 或者: from tensorflow.contrib.tpu.python.tpu.tpu_config import RunConfig [as 別名]
def test_create_estimator_with_default_train_eval_steps(self):
"""Tests that number of train/eval defaults to config values."""
run_config = tf.estimator.RunConfig()
hparams = model_hparams.create_hparams(
hparams_overrides='load_pretrained=false')
pipeline_config_path = get_pipeline_config_path(MODEL_NAME_FOR_TEST)
configs = config_util.get_configs_from_pipeline_file(pipeline_config_path)
config_train_steps = configs['train_config'].num_steps
train_and_eval_dict = model_lib.create_estimator_and_inputs(
run_config, hparams, pipeline_config_path)
estimator = train_and_eval_dict['estimator']
train_steps = train_and_eval_dict['train_steps']
self.assertIsInstance(estimator, tf.estimator.Estimator)
self.assertEqual(config_train_steps, train_steps)
示例7: test_create_train_and_eval_specs
# 需要導入模塊: from tensorflow.contrib.tpu.python.tpu import tpu_config [as 別名]
# 或者: from tensorflow.contrib.tpu.python.tpu.tpu_config import RunConfig [as 別名]
def test_create_train_and_eval_specs(self):
"""Tests that `TrainSpec` and `EvalSpec` is created correctly."""
run_config = tf.estimator.RunConfig()
hparams = model_hparams.create_hparams(
hparams_overrides='load_pretrained=false')
pipeline_config_path = get_pipeline_config_path(MODEL_NAME_FOR_TEST)
train_steps = 20
train_and_eval_dict = model_lib.create_estimator_and_inputs(
run_config,
hparams,
pipeline_config_path,
train_steps=train_steps)
train_input_fn = train_and_eval_dict['train_input_fn']
eval_input_fns = train_and_eval_dict['eval_input_fns']
eval_on_train_input_fn = train_and_eval_dict['eval_on_train_input_fn']
predict_input_fn = train_and_eval_dict['predict_input_fn']
train_steps = train_and_eval_dict['train_steps']
train_spec, eval_specs = model_lib.create_train_and_eval_specs(
train_input_fn,
eval_input_fns,
eval_on_train_input_fn,
predict_input_fn,
train_steps,
eval_on_train_data=True,
final_exporter_name='exporter',
eval_spec_names=['holdout'])
self.assertEqual(train_steps, train_spec.max_steps)
self.assertEqual(2, len(eval_specs))
self.assertEqual(None, eval_specs[0].steps)
self.assertEqual('holdout', eval_specs[0].name)
self.assertEqual('exporter', eval_specs[0].exporters[0].name)
self.assertEqual(None, eval_specs[1].steps)
self.assertEqual('eval_on_train', eval_specs[1].name)
示例8: test_experiment
# 需要導入模塊: from tensorflow.contrib.tpu.python.tpu import tpu_config [as 別名]
# 或者: from tensorflow.contrib.tpu.python.tpu.tpu_config import RunConfig [as 別名]
def test_experiment(self):
"""Tests that the `Experiment` object is constructed correctly."""
run_config = tf.estimator.RunConfig()
hparams = model_hparams.create_hparams(
hparams_overrides='load_pretrained=false')
pipeline_config_path = get_pipeline_config_path(MODEL_NAME_FOR_TEST)
experiment = model_lib.populate_experiment(
run_config,
hparams,
pipeline_config_path,
train_steps=10,
eval_steps=20)
self.assertEqual(10, experiment.train_steps)
self.assertEqual(None, experiment.eval_steps)
示例9: test_create_train_and_eval_specs
# 需要導入模塊: from tensorflow.contrib.tpu.python.tpu import tpu_config [as 別名]
# 或者: from tensorflow.contrib.tpu.python.tpu.tpu_config import RunConfig [as 別名]
def test_create_train_and_eval_specs(self):
"""Tests that `TrainSpec` and `EvalSpec` is created correctly."""
run_config = tf.estimator.RunConfig()
hparams = model_hparams.create_hparams(
hparams_overrides='load_pretrained=false')
pipeline_config_path = get_pipeline_config_path(MODEL_NAME_FOR_TEST)
train_steps = 20
eval_steps = 10
eval_on_train_steps = 15
train_and_eval_dict = model_lib.create_estimator_and_inputs(
run_config,
hparams,
pipeline_config_path,
train_steps=train_steps,
eval_steps=eval_steps)
train_input_fn = train_and_eval_dict['train_input_fn']
eval_input_fn = train_and_eval_dict['eval_input_fn']
eval_on_train_input_fn = train_and_eval_dict['eval_on_train_input_fn']
predict_input_fn = train_and_eval_dict['predict_input_fn']
train_steps = train_and_eval_dict['train_steps']
eval_steps = train_and_eval_dict['eval_steps']
train_spec, eval_specs = model_lib.create_train_and_eval_specs(
train_input_fn,
eval_input_fn,
eval_on_train_input_fn,
predict_input_fn,
train_steps,
eval_steps,
eval_on_train_data=True,
eval_on_train_steps=eval_on_train_steps,
final_exporter_name='exporter',
eval_spec_name='holdout')
self.assertEqual(train_steps, train_spec.max_steps)
self.assertEqual(2, len(eval_specs))
self.assertEqual(eval_steps, eval_specs[0].steps)
self.assertEqual('holdout', eval_specs[0].name)
self.assertEqual('exporter', eval_specs[0].exporters[0].name)
self.assertEqual(eval_on_train_steps, eval_specs[1].steps)
self.assertEqual('eval_on_train', eval_specs[1].name)
示例10: export_estimator_savedmodel
# 需要導入模塊: from tensorflow.contrib.tpu.python.tpu import tpu_config [as 別名]
# 或者: from tensorflow.contrib.tpu.python.tpu.tpu_config import RunConfig [as 別名]
def export_estimator_savedmodel(estimator,
export_dir_base,
serving_input_receiver_fn,
assets_extra=None,
as_text=False,
checkpoint_path=None,
strip_default_attrs=False):
"""Export `Estimator` trained model for TPU inference.
Args:
estimator: `Estimator` with which model has been trained.
export_dir_base: A string containing a directory in which to create
timestamped subdirectories containing exported SavedModels.
serving_input_receiver_fn: A function that takes no argument and returns a
`ServingInputReceiver` or `TensorServingInputReceiver`.
assets_extra: A dict specifying how to populate the assets.extra directory
within the exported SavedModel, or `None` if no extra assets are needed.
as_text: whether to write the SavedModel proto in text format.
checkpoint_path: The checkpoint path to export. If `None` (the default),
the most recent checkpoint found within the model directory is chosen.
strip_default_attrs: Boolean. If `True`, default-valued attributes will be
removed from the NodeDefs.
Returns:
The string path to the exported directory.
"""
# `TPUEstimator` requires `tpu_config.RunConfig`, so we cannot use
# `estimator.config`.
config = tpu_config.RunConfig(model_dir=estimator.model_dir)
est = TPUEstimator(
estimator._model_fn, # pylint: disable=protected-access
config=config,
params=estimator.params,
use_tpu=True,
train_batch_size=2048, # Does not matter.
eval_batch_size=2048, # Does not matter.
)
return est.export_savedmodel(export_dir_base, serving_input_receiver_fn,
assets_extra, as_text, checkpoint_path,
strip_default_attrs)
示例11: test_experiment
# 需要導入模塊: from tensorflow.contrib.tpu.python.tpu import tpu_config [as 別名]
# 或者: from tensorflow.contrib.tpu.python.tpu.tpu_config import RunConfig [as 別名]
def test_experiment(self):
"""Tests that the `Experiment` object is constructed correctly."""
run_config = tf.estimator.RunConfig()
hparams = model_hparams.create_hparams(
hparams_overrides='load_pretrained=false')
pipeline_config_path = get_pipeline_config_path(MODEL_NAME_FOR_TEST)
experiment = model_lib.populate_experiment(
run_config,
hparams,
pipeline_config_path,
train_steps=10,
eval_steps=20)
self.assertEqual(10, experiment.train_steps)
self.assertEqual(20, experiment.eval_steps)
示例12: test_create_train_and_eval_specs
# 需要導入模塊: from tensorflow.contrib.tpu.python.tpu import tpu_config [as 別名]
# 或者: from tensorflow.contrib.tpu.python.tpu.tpu_config import RunConfig [as 別名]
def test_create_train_and_eval_specs(self):
"""Tests that `TrainSpec` and `EvalSpec` is created correctly."""
run_config = tf.estimator.RunConfig()
hparams = model_hparams.create_hparams(
hparams_overrides='load_pretrained=false')
pipeline_config_path = get_pipeline_config_path(MODEL_NAME_FOR_TEST)
train_steps = 20
eval_steps = 10
train_and_eval_dict = model_lib.create_estimator_and_inputs(
run_config,
hparams,
pipeline_config_path,
train_steps=train_steps,
eval_steps=eval_steps)
train_input_fn = train_and_eval_dict['train_input_fn']
eval_input_fn = train_and_eval_dict['eval_input_fn']
eval_on_train_input_fn = train_and_eval_dict['eval_on_train_input_fn']
predict_input_fn = train_and_eval_dict['predict_input_fn']
train_steps = train_and_eval_dict['train_steps']
eval_steps = train_and_eval_dict['eval_steps']
train_spec, eval_specs = model_lib.create_train_and_eval_specs(
train_input_fn,
eval_input_fn,
eval_on_train_input_fn,
predict_input_fn,
train_steps,
eval_steps,
eval_on_train_data=True,
final_exporter_name='exporter',
eval_spec_name='holdout')
self.assertEqual(train_steps, train_spec.max_steps)
self.assertEqual(2, len(eval_specs))
self.assertEqual(eval_steps, eval_specs[0].steps)
self.assertEqual('holdout', eval_specs[0].name)
self.assertEqual('exporter', eval_specs[0].exporters[0].name)
self.assertEqual(eval_steps, eval_specs[1].steps)
self.assertEqual('eval_on_train', eval_specs[1].name)