本文整理匯總了Python中tensorflow.contrib.summary.scalar方法的典型用法代碼示例。如果您正苦於以下問題:Python summary.scalar方法的具體用法?Python summary.scalar怎麽用?Python summary.scalar使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.contrib.summary
的用法示例。
在下文中一共展示了summary.scalar方法的4個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: where
# 需要導入模塊: from tensorflow.contrib import summary [as 別名]
# 或者: from tensorflow.contrib.summary import scalar [as 別名]
def where(cond, true, false, name=None):
"""Similar to tf.where, but broadcasts scalar values."""
with tf.name_scope(name, 'where', [cond, true, false]) as name:
cond = tf.convert_to_tensor(cond, name='cond', dtype=tf.bool)
true = tf.convert_to_tensor(true, name='true',
dtype=false.dtype if isinstance(false, tf.Tensor) else None)
false = tf.convert_to_tensor(false, name='false', dtype=true.dtype)
if true.shape.rank == false.shape.rank == 0:
shape = tf.shape(cond)
true = tf.fill(shape, true)
false = tf.fill(shape, false)
elif true.shape.rank == 0:
true = tf.fill(tf.shape(false), true)
elif false.shape.rank == 0:
false = tf.fill(tf.shape(true), false)
return tf.where(cond, true, false, name=name)
示例2: record_stats
# 需要導入模塊: from tensorflow.contrib import summary [as 別名]
# 或者: from tensorflow.contrib.summary import scalar [as 別名]
def record_stats(*, stats, summary_writer, step, log_interval, name=None, comm=MPI.COMM_WORLD):
def log_stats(step, *stat_values):
if comm.Get_rank() != 0 or step % log_interval != 0:
return
for k, v in safe_zip(stats.keys(), stat_values):
print('k = ', k, ', v = ', v)
summary_ops = [tf.py_func(log_stats, [step] + list(stats.values()), [])]
if summary_writer:
with summary_writer.as_default(), summary.always_record_summaries():
for key, value in stats.items():
summary_ops.append(summary.scalar(key, value, step=step))
return tf.group(*summary_ops, name=name)
示例3: __init__
# 需要導入模塊: from tensorflow.contrib import summary [as 別名]
# 或者: from tensorflow.contrib.summary import scalar [as 別名]
def __init__(self,
update_batchnorm_params=True):
self.update_batchnorm_params = update_batchnorm_params
num_samples = datasets.get_count(FLAGS.train_split)
if FLAGS.num_supervised_examples:
num_samples = FLAGS.num_supervised_examples
steps_per_epoch = num_samples // FLAGS.batch_size
self.steps_per_epoch = steps_per_epoch
global_step = tf.train.get_or_create_global_step()
self.global_step_inc = tf.assign_add(global_step, 1)
# lr_scale_batch_size defines a canonical batch size that is coupled with
# the initial learning rate. If actual batch size is not the same as
# canonical than learning rate is linearly scaled. This is very convinient
# as this allows to vary batch size without recomputing learning rate.
lr_factor = 1.0
if FLAGS.lr_scale_batch_size:
lr_factor = FLAGS.batch_size / float(FLAGS.lr_scale_batch_size)
# We actually also accept fractional epochs.
schedule_in_steps = utils.get_schedule_from_config(
FLAGS.schedule, steps_per_epoch)
warmup, decays = schedule_in_steps[0], schedule_in_steps[1:-1]
self.lr = get_lr(
global_step,
base_lr=FLAGS.lr * lr_factor,
decay_steps=decays,
lr_decay_factor=FLAGS.lr_decay_factor,
warmup_steps=warmup)
# TODO(marvinritter): Re-enable summaries with support for TPU training.
# tf.summary.scalar('learning_rate', self.lr)
示例4: focal_loss
# 需要導入模塊: from tensorflow.contrib import summary [as 別名]
# 或者: from tensorflow.contrib.summary import scalar [as 別名]
def focal_loss(labels, logits, alpha, gamma):
"""Compute the focal loss between `logits` and the ground truth `labels`.
Focal loss = -alpha_t * (1-pt)^gamma * log(pt)
where pt is the probability of being classified to the true class.
pt = p (if true class), otherwise pt = 1 - p. p = sigmoid(logit).
Args:
labels: A float32 tensor of size [batch, num_classes].
logits: A float32 tensor of size [batch, num_classes].
alpha: A float32 tensor of size [batch_size]
specifying per-example weight for balanced cross entropy.
gamma: A float32 scalar modulating loss from hard and easy examples.
Returns:
focal_loss: A float32 scalar representing normalized total loss.
"""
with tf.name_scope('focal_loss'):
logits = tf.cast(logits, dtype=tf.float32)
cross_entropy = tf.nn.sigmoid_cross_entropy_with_logits(
labels=labels, logits=logits)
# positive_label_mask = tf.equal(labels, 1.0)
# probs = tf.sigmoid(logits)
# probs_gt = tf.where(positive_label_mask, probs, 1.0 - probs)
# # With gamma < 1, the implementation could produce NaN during back prop.
# modulator = tf.pow(1.0 - probs_gt, gamma)
# A numerically stable implementation of modulator.
if gamma == 0.0:
modulator = 1.0
else:
modulator = tf.exp(-gamma * labels * logits - gamma * tf.log1p(
tf.exp(-1.0 * logits)))
loss = modulator * cross_entropy
weighted_loss = alpha * loss
focal_loss = tf.reduce_sum(weighted_loss)
# Normalize by the total number of positive samples.
focal_loss /= tf.reduce_sum(labels)
return focal_loss