當前位置: 首頁>>代碼示例>>Python>>正文


Python slim.xavier_initializer方法代碼示例

本文整理匯總了Python中tensorflow.contrib.slim.xavier_initializer方法的典型用法代碼示例。如果您正苦於以下問題:Python slim.xavier_initializer方法的具體用法?Python slim.xavier_initializer怎麽用?Python slim.xavier_initializer使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.contrib.slim的用法示例。


在下文中一共展示了slim.xavier_initializer方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: se_module

# 需要導入模塊: from tensorflow.contrib import slim [as 別名]
# 或者: from tensorflow.contrib.slim import xavier_initializer [as 別名]
def se_module(input_net, ratio=16, reuse = None, scope = None):
    with tf.variable_scope(scope, 'SE', [input_net], reuse=reuse):
        h,w,c = tuple([dim.value for dim in input_net.shape[1:4]])
        assert c % ratio == 0
        hidden_units = int(c / ratio)
        squeeze = slim.avg_pool2d(input_net, [h,w], padding='VALID')
        excitation = slim.flatten(squeeze)
        excitation = slim.fully_connected(excitation, hidden_units, scope='se_fc1',
                                weights_regularizer=None,
                                weights_initializer=slim.xavier_initializer(), 
                                activation_fn=tf.nn.relu)
        excitation = slim.fully_connected(excitation, c, scope='se_fc2',
                                weights_regularizer=None,
                                weights_initializer=slim.xavier_initializer(), 
                                activation_fn=tf.nn.sigmoid)        
        excitation = tf.reshape(excitation, [-1,1,1,c])
        output_net = input_net * excitation

        return output_net 
開發者ID:seasonSH,項目名稱:Probabilistic-Face-Embeddings,代碼行數:21,代碼來源:sphere_net_PFE.py

示例2: conv_module

# 需要導入模塊: from tensorflow.contrib import slim [as 別名]
# 或者: from tensorflow.contrib.slim import xavier_initializer [as 別名]
def conv_module(net, num_res_layers, num_kernels, trans_kernel_size=3, trans_stride=2,
                     use_se=False, reuse=None, scope=None):
    with tf.variable_scope(scope, 'conv', [net], reuse=reuse):
        net = slim.conv2d(net, num_kernels, kernel_size=trans_kernel_size, stride=trans_stride, padding='SAME',
                weights_initializer=slim.xavier_initializer()) 
        shortcut = net
        for i in range(num_res_layers):
            net = slim.conv2d(net, num_kernels, kernel_size=3, stride=1, padding='SAME',
                weights_initializer=tf.truncated_normal_initializer(stddev=0.01),
                biases_initializer=None)
            net = slim.conv2d(net, num_kernels, kernel_size=3, stride=1, padding='SAME',
                weights_initializer=tf.truncated_normal_initializer(stddev=0.01),
                biases_initializer=None)
            print('| ---- block_%d' % i)
            if use_se:
                net = se_module(net)
            net = net + shortcut
            shortcut = net
    return net 
開發者ID:seasonSH,項目名稱:Probabilistic-Face-Embeddings,代碼行數:21,代碼來源:sphere_net_PFE.py

示例3: se_module

# 需要導入模塊: from tensorflow.contrib import slim [as 別名]
# 或者: from tensorflow.contrib.slim import xavier_initializer [as 別名]
def se_module(input_net, ratio=16, reuse = None, scope = None):
    with tf.variable_scope(scope, 'SE', [input_net], reuse=reuse):
        h,w,c = tuple([dim.value for dim in input_net.shape[1:4]])
        assert c % ratio == 0
        hidden_units = int(c / ratio)
        squeeze = slim.avg_pool2d(input_net, [h,w], padding='VALID')
        excitation = slim.flatten(squeeze)
        excitation = slim.fully_connected(excitation, hidden_units, scope='se_fc1',
                                weights_regularizer=None,
                                # weights_initializer=tf.truncated_normal_initializer(stddev=0.1),
                                weights_initializer=slim.xavier_initializer(), 
                                activation_fn=tf.nn.relu)
        excitation = slim.fully_connected(excitation, c, scope='se_fc2',
                                weights_regularizer=None,
                                # weights_initializer=tf.truncated_normal_initializer(stddev=0.1),
                                weights_initializer=slim.xavier_initializer(), 
                                activation_fn=tf.nn.sigmoid)        
        excitation = tf.reshape(excitation, [-1,1,1,c])
        output_net = input_net * excitation

        return output_net 
開發者ID:seasonSH,項目名稱:DocFace,代碼行數:23,代碼來源:face_resnet.py

示例4: R_Net

# 需要導入模塊: from tensorflow.contrib import slim [as 別名]
# 或者: from tensorflow.contrib.slim import xavier_initializer [as 別名]
def R_Net(inputs,label=None,bbox_target=None,landmark_target=None,training=True):
    with slim.arg_scope([slim.conv2d],
                        activation_fn = prelu,
                        weights_initializer=slim.xavier_initializer(),
                        biases_initializer=tf.zeros_initializer(),
                        weights_regularizer=slim.l2_regularizer(0.0005),
                        padding='valid'):
        print( inputs.get_shape())
        net = slim.conv2d(inputs, num_outputs=28, kernel_size=[3,3], stride=1, scope="conv1")
        print( net.get_shape())
        net = slim.max_pool2d(net, kernel_size=[3, 3], stride=2, scope="pool1", padding='SAME')
        print( net.get_shape())
        net = slim.conv2d(net,num_outputs=48,kernel_size=[3,3],stride=1,scope="conv2")
        print( net.get_shape())
        net = slim.max_pool2d(net,kernel_size=[3,3],stride=2,scope="pool2")
        print( net.get_shape())
        net = slim.conv2d(net,num_outputs=64,kernel_size=[2,2],stride=1,scope="conv3")
        print( net.get_shape())
        fc_flatten = slim.flatten(net)
        print( fc_flatten.get_shape())
        fc1 = slim.fully_connected(fc_flatten, num_outputs=128,scope="fc1")
        print( fc1.get_shape())
        #batch*2
        cls_prob = slim.fully_connected(fc1,num_outputs=2,scope="cls_fc",activation_fn=tf.nn.softmax)
        print( cls_prob.get_shape())
        #batch*4
        bbox_pred = slim.fully_connected(fc1,num_outputs=4,scope="bbox_fc",activation_fn=None)
        print( bbox_pred.get_shape())
        #batch*10
        landmark_pred = slim.fully_connected(fc1,num_outputs=10,scope="landmark_fc",activation_fn=None)
        print( landmark_pred.get_shape())
        #train
        if training:
            cls_loss = cls_ohem(cls_prob,label)
            bbox_loss = bbox_ohem(bbox_pred,bbox_target,label)
            accuracy = cal_accuracy(cls_prob,label)
            landmark_loss = landmark_ohem(landmark_pred,landmark_target,label)
            L2_loss = tf.add_n(slim.losses.get_regularization_losses())
            return cls_loss,bbox_loss,landmark_loss,L2_loss,accuracy
        else:
            return cls_prob,bbox_pred,landmark_pred 
開發者ID:huseinzol05,項目名稱:Gather-Deployment,代碼行數:43,代碼來源:mtcnn_model.py

示例5: flatten_fully_connected

# 需要導入模塊: from tensorflow.contrib import slim [as 別名]
# 或者: from tensorflow.contrib.slim import xavier_initializer [as 別名]
def flatten_fully_connected(inputs,
                            num_outputs,
                            activation_fn=tf.nn.relu,
                            normalizer_fn=None,
                            normalizer_params=None,
                            weights_initializer=slim.xavier_initializer(),
                            weights_regularizer=None,
                            biases_initializer=tf.zeros_initializer(),
                            biases_regularizer=None,
                            reuse=None,
                            variables_collections=None,
                            outputs_collections=None,
                            trainable=True,
                            scope=None):
    with tf.variable_scope(scope, 'flatten_fully_connected', [inputs]):
        if inputs.shape.ndims > 2:
            inputs = slim.flatten(inputs)
        return slim.fully_connected(inputs,
                                    num_outputs,
                                    activation_fn,
                                    normalizer_fn,
                                    normalizer_params,
                                    weights_initializer,
                                    weights_regularizer,
                                    biases_initializer,
                                    biases_regularizer,
                                    reuse,
                                    variables_collections,
                                    outputs_collections,
                                    trainable,
                                    scope) 
開發者ID:csmliu,項目名稱:STGAN,代碼行數:33,代碼來源:layers.py

示例6: flatten_fully_connected_v2

# 需要導入模塊: from tensorflow.contrib import slim [as 別名]
# 或者: from tensorflow.contrib.slim import xavier_initializer [as 別名]
def flatten_fully_connected_v2(inputs,
                               num_outputs,
                               activation_fn=nn.relu,
                               normalizer_fn=None,
                               normalizer_params=None,
                               weights_normalizer_fn=None,
                               weights_normalizer_params=None,
                               weights_initializer=initializers.xavier_initializer(),
                               weights_regularizer=None,
                               biases_initializer=init_ops.zeros_initializer(),
                               biases_regularizer=None,
                               reuse=None,
                               variables_collections=None,
                               outputs_collections=None,
                               trainable=True,
                               scope=None):
    with variable_scope.variable_scope(scope, 'flatten_fully_connected_v2'):
        if inputs.shape.ndims > 2:
            inputs = layers.flatten(inputs)
        return fully_connected(inputs=inputs,
                               num_outputs=num_outputs,
                               activation_fn=activation_fn,
                               normalizer_fn=normalizer_fn,
                               normalizer_params=normalizer_params,
                               weights_normalizer_fn=weights_normalizer_fn,
                               weights_normalizer_params=weights_normalizer_params,
                               weights_initializer=weights_initializer,
                               weights_regularizer=weights_regularizer,
                               biases_initializer=biases_initializer,
                               biases_regularizer=biases_regularizer,
                               reuse=reuse,
                               variables_collections=variables_collections,
                               outputs_collections=outputs_collections,
                               trainable=trainable,
                               scope=scope) 
開發者ID:csmliu,項目名稱:STGAN,代碼行數:37,代碼來源:layers.py

示例7: flatten_fully_connected_v1

# 需要導入模塊: from tensorflow.contrib import slim [as 別名]
# 或者: from tensorflow.contrib.slim import xavier_initializer [as 別名]
def flatten_fully_connected_v1(inputs,
                               num_outputs,
                               activation_fn=tf.nn.relu,
                               normalizer_fn=None,
                               normalizer_params=None,
                               weights_initializer=slim.xavier_initializer(),
                               weights_regularizer=None,
                               biases_initializer=tf.zeros_initializer(),
                               biases_regularizer=None,
                               reuse=None,
                               variables_collections=None,
                               outputs_collections=None,
                               trainable=True,
                               scope=None):
    with tf.variable_scope(scope, 'flatten_fully_connected_v1'):
        if inputs.shape.ndims > 2:
            inputs = slim.flatten(inputs)
        return slim.fully_connected(inputs,
                                    num_outputs,
                                    activation_fn,
                                    normalizer_fn,
                                    normalizer_params,
                                    weights_initializer,
                                    weights_regularizer,
                                    biases_initializer,
                                    biases_regularizer,
                                    reuse,
                                    variables_collections,
                                    outputs_collections,
                                    trainable,
                                    scope) 
開發者ID:csmliu,項目名稱:STGAN,代碼行數:33,代碼來源:layers.py

示例8: inference

# 需要導入模塊: from tensorflow.contrib import slim [as 別名]
# 或者: from tensorflow.contrib.slim import xavier_initializer [as 別名]
def inference(images, embedding_size=512, reuse=None, scope='SphereNet'):
    with slim.arg_scope([slim.conv2d, slim.fully_connected],
                        weights_regularizer=slim.l2_regularizer(0.0),
                        normalizer_fn=None, 
                        normalizer_params=None, 
                        activation_fn=parametric_relu):
        with tf.variable_scope('SphereNet', [images], reuse=reuse):
            # Fix the moving mean and std when training PFE 
            with slim.arg_scope([slim.batch_norm, slim.dropout], is_training=False): 

                print('SphereNet input shape:', [dim.value for dim in images.shape])
                
                model_version = '64' 
                num_layers, num_kernels = model_params[model_version]


                net = conv_module(images, num_layers[0], num_kernels[0], scope='conv1')
                print('module_1 shape:', [dim.value for dim in net.shape])

                net = conv_module(net, num_layers[1], num_kernels[1], scope='conv2')
                print('module_2 shape:', [dim.value for dim in net.shape])
                
                net = conv_module(net, num_layers[2], num_kernels[2], scope='conv3')
                print('module_3 shape:', [dim.value for dim in net.shape])

                net = conv_module(net, num_layers[3], num_kernels[3], scope='conv4')
                print('module_4 shape:', [dim.value for dim in net.shape])

                net_ = net
                net = slim.flatten(net)

                mu = slim.fully_connected(net, embedding_size, scope='Bottleneck',
                                        weights_initializer=slim.xavier_initializer(),
                                        normalizer_fn=slim.batch_norm, normalizer_params=batch_norm_params_last,
                                        activation_fn=None)
                
                # Output used for PFE
                mu = tf.nn.l2_normalize(mu, axis=1)
                conv_final = net
            
    return mu, conv_final 
開發者ID:seasonSH,項目名稱:Probabilistic-Face-Embeddings,代碼行數:43,代碼來源:sphere_net_PFE.py

示例9: conv_module

# 需要導入模塊: from tensorflow.contrib import slim [as 別名]
# 或者: from tensorflow.contrib.slim import xavier_initializer [as 別名]
def conv_module(net, num_res_layers, num_kernels, reuse = None, scope = None):
    with tf.variable_scope(scope, 'conv', [net], reuse=reuse):
        # Every 2 conv layers constitute a residual block
        if scope == 'conv1':
            for i in range(len(num_kernels)):
                with tf.variable_scope('layer_%d'%i, reuse=reuse):
                    net = slim.conv2d(net, num_kernels[i], kernel_size=3, stride=1, padding='VALID',
                                    weights_initializer=slim.xavier_initializer())
                    print('| ---- layer_%d' % i)
            net = slim.max_pool2d(net, 2, stride=2, padding='VALID')
        else:
            shortcut = net
            for i in range(num_res_layers):
                with tf.variable_scope('layer_%d'%i, reuse=reuse):
                    net = slim.conv2d(net, num_kernels[0], kernel_size=3, stride=1, padding='SAME',
                                    weights_initializer=tf.truncated_normal_initializer(stddev=0.01),
                                    biases_initializer=None)
                    print('| ---- layer_%d' % i)
                if i % 2 == 1:
                    net = se_module(net)
                    net = net + shortcut
                    shortcut = net
                    print('| shortcut')
            # Pooling for conv2 - conv4
            if len(num_kernels) > 1:
                with tf.variable_scope('expand', reuse=reuse):
                    net = slim.conv2d(net, num_kernels[1], kernel_size=3, stride=1, padding='VALID',
                                    weights_initializer=slim.xavier_initializer())
                    net = slim.max_pool2d(net, 2, stride=2, padding='VALID')
                    print('- expand')

    return net 
開發者ID:seasonSH,項目名稱:DocFace,代碼行數:34,代碼來源:face_resnet.py

示例10: inference

# 需要導入模塊: from tensorflow.contrib import slim [as 別名]
# 或者: from tensorflow.contrib.slim import xavier_initializer [as 別名]
def inference(images, keep_probability, phase_train=True, bottleneck_layer_size=512, 
            weight_decay=0.0, reuse=None, model_version=None):
    with slim.arg_scope([slim.conv2d, slim.fully_connected],
                        weights_regularizer=slim.l2_regularizer(weight_decay),
                        activation_fn=activation,
                        normalizer_fn=None,
                        normalizer_params=None):
        with tf.variable_scope('FaceResNet', [images], reuse=reuse):
            with slim.arg_scope([slim.batch_norm, slim.dropout],
                                is_training=phase_train):
                print('input shape:', [dim.value for dim in images.shape])
                
                net = conv_module(images, 0, [32, 64], scope='conv1')
                print('module_1 shape:', [dim.value for dim in net.shape])

                net = conv_module(net, 2, [64, 128], scope='conv2')
                print('module_2 shape:', [dim.value for dim in net.shape])

                net = conv_module(net, 4, [128, 256], scope='conv3')
                print('module_3 shape:', [dim.value for dim in net.shape])

                net = conv_module(net, 10, [256, 512], scope='conv4')
                print('module_4 shape:', [dim.value for dim in net.shape])

                net = conv_module(net, 6, [512], scope='conv5')
                print('module_5 shape:', [dim.value for dim in net.shape])
                
                
                net = slim.flatten(net)
                net = slim.fully_connected(net, bottleneck_layer_size, scope='Bottleneck',
                                        weights_initializer=slim.xavier_initializer(), 
                                        activation_fn=None)

    return net 
開發者ID:seasonSH,項目名稱:DocFace,代碼行數:36,代碼來源:face_resnet.py

示例11: conv_module

# 需要導入模塊: from tensorflow.contrib import slim [as 別名]
# 或者: from tensorflow.contrib.slim import xavier_initializer [as 別名]
def conv_module(net, num_res_layers, num_kernels, reuse = None, scope = None):
    with tf.variable_scope(scope, 'conv', [net], reuse=reuse):
        # Every 2 conv layers constitute a residual block
        if scope == 'conv1':
            for i in range(len(num_kernels)):
                with tf.variable_scope('layer_%d'%i, reuse=reuse):
                    net = slim.conv2d(net, num_kernels[i], kernel_size=3, stride=1, padding='VALID',
                                    weights_initializer=slim.xavier_initializer())
                    # net = activation(net)
                    print('| ---- layer_%d' % i)
            net = slim.max_pool2d(net, 2, stride=2, padding='VALID')
        else:
            shortcut = net
            for i in range(num_res_layers):
                with tf.variable_scope('layer_%d'%i, reuse=reuse):
                    net = slim.conv2d(net, num_kernels[0], kernel_size=3, stride=1, padding='SAME',
                                    weights_initializer=tf.truncated_normal_initializer(stddev=0.01),
                                    biases_initializer=None)
                    # net = activation(net)
                    print('| ---- layer_%d' % i)
                if i % 2 == 1:
                    net = se_module(net)
                    net = net + shortcut
                    shortcut = net
                    print('| shortcut')
            # Pooling for conv2 - conv4
            if len(num_kernels) > 1:
                with tf.variable_scope('expand', reuse=reuse):
                    # net = slim.batch_norm(net, **batch_norm_params)
                    net = slim.conv2d(net, num_kernels[1], kernel_size=3, stride=1, padding='VALID',
                                    weights_initializer=slim.xavier_initializer())
                    # net = activation(net)
                    net = slim.max_pool2d(net, 2, stride=2, padding='VALID')
                    print('- expand')

    return net 
開發者ID:seasonSH,項目名稱:DocFace,代碼行數:38,代碼來源:sibling_shared_res.py

示例12: cosine_softmax

# 需要導入模塊: from tensorflow.contrib import slim [as 別名]
# 或者: from tensorflow.contrib.slim import xavier_initializer [as 別名]
def cosine_softmax(prelogits, label, num_classes, weight_decay, scale=16.0, reuse=None):
    ''' Tensorflow implementation of L2-Sofmax, proposed in:
        R. Ranjan, C. D. Castillo, and R. Chellappa. L2 constrained softmax loss for 
        discriminativeface verification. arXiv:1703.09507, 2017. 
    '''
    
    nrof_features = prelogits.shape[1].value
    
    with tf.variable_scope('Logits', reuse=reuse):
        weights = tf.get_variable('weights', shape=(nrof_features, num_classes),
                regularizer=slim.l2_regularizer(weight_decay),
                initializer=slim.xavier_initializer(),
                # initializer=tf.truncated_normal_initializer(stddev=0.1),
                dtype=tf.float32)
        _scale = tf.get_variable('scale', shape=(),
                regularizer=slim.l2_regularizer(1e-2),
                initializer=tf.constant_initializer(1.00),
                trainable=True,
                dtype=tf.float32)

        weights_normed = tf.nn.l2_normalize(weights, dim=0)
        prelogits_normed = tf.nn.l2_normalize(prelogits, dim=1)

        if scale == 'auto':
            scale = tf.nn.softplus(_scale)
        else:
            assert type(scale) == float
            scale = tf.constant(scale)

        logits = scale * tf.matmul(prelogits_normed, weights_normed)


    cross_entropy =  tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(\
            labels=label, logits=logits), name='cross_entropy')

    return logits, cross_entropy 
開發者ID:seasonSH,項目名稱:DocFace,代碼行數:38,代碼來源:tflib.py

示例13: flatten_fully_connected

# 需要導入模塊: from tensorflow.contrib import slim [as 別名]
# 或者: from tensorflow.contrib.slim import xavier_initializer [as 別名]
def flatten_fully_connected(inputs,
                            num_outputs,
                            activation_fn=tf.nn.relu,
                            normalizer_fn=None,
                            normalizer_params=None,
                            weights_initializer=slim.xavier_initializer(),
                            weights_regularizer=None,
                            biases_initializer=tf.zeros_initializer(),
                            biases_regularizer=None,
                            reuse=None,
                            variables_collections=None,
                            outputs_collections=None,
                            trainable=True,
                            scope=None):
    with tf.variable_scope(scope, 'flatten_fully_connected', [inputs]):
        if inputs.shape.ndims > 2:
            inputs = slim.flatten(inputs)
        return slim.fully_connected(inputs,
                                    num_outputs,
                                    activation_fn,
                                    normalizer_fn,
                                    normalizer_params,
                                    weights_initializer,
                                    weights_regularizer,
                                    biases_initializer,
                                    biases_regularizer,
                                    reuse,
                                    variables_collections,
                                    outputs_collections,
                                    trainable,
                                    scope)

# lrelu 
開發者ID:tntrung,項目名稱:gan,代碼行數:35,代碼來源:ops.py

示例14: _region_proposal

# 需要導入模塊: from tensorflow.contrib import slim [as 別名]
# 或者: from tensorflow.contrib.slim import xavier_initializer [as 別名]
def _region_proposal(self, net_conv, is_training):
        initializer = slim.xavier_initializer(uniform=True)

        rpn = slim.conv2d(net_conv, cfg.RPN_CHANNELS, [3, 3], trainable=is_training, weights_initializer=initializer,
                          scope="rpn_conv/3x3")
        self._act_summaries.append(rpn)

        hidden_num = 128
        # bi_lstm shape: [-1, hidden_num * 2]
        bi_lstm = self._BiLstm(rpn, cfg.RPN_CHANNELS, hidden_num, name="bi_lstm")

        shape = tf.shape(rpn)
        N, H, W, _ = shape[0], shape[1], shape[2], shape[3]
        bi_lstm_reshape = tf.reshape(bi_lstm, [N, H, W, hidden_num * 2])

        fc = slim.conv2d(bi_lstm_reshape, 512, [1, 1], weights_initializer=initializer,
                         padding='VALID', scope='conv_fc')

        # use 1x1 conv as FC (N, H, W, num_anchors * 2)
        rpn_cls_score = slim.conv2d(fc, self._num_anchors * 2, [1, 1], weights_initializer=initializer,
                                    padding='VALID', activation_fn=None, scope='rpn_cls_score')

        # use 1x1 conv as FC (N, H, W, num_anchors * 4)
        rpn_bbox_pred = slim.conv2d(fc, self._num_anchors * 4, [1, 1], weights_initializer=initializer,
                                    padding='VALID', activation_fn=None, scope='rpn_bbox_pred')

        # (N, H, W, num_anchors * 2) -> (N, H, W * num_anchors, 2)
        rpn_cls_score_reshape = self._reshape_layer(rpn_cls_score, 2, 'rpn_cls_score_reshape')
        rpn_cls_prob = self._softmax_layer(rpn_cls_score_reshape, "rpn_cls_prob")

        # (N, H, W*num_anchors, 2) -> (N, H, W, num_anchors*2)
        rpn_cls_prob_reshape = self._reshape_layer(rpn_cls_prob, self._num_anchors * 2, "rpn_cls_prob_reshape")

        if is_training:
            self._anchor_target_layer(rpn_cls_score, "anchor")
        else:
            if cfg.TEST.MODE == 'nms':
                rois, _ = self._proposal_layer(rpn_cls_prob_reshape, rpn_bbox_pred, "rois")
            elif cfg.TEST.MODE == 'top':
                rois, _ = self._proposal_top_layer(rpn_cls_prob, rpn_bbox_pred, "rois")
            else:
                raise NotImplementedError
            self._predictions["rois"] = rois

        self._predictions["rpn_cls_score"] = rpn_cls_score
        self._predictions["rpn_cls_score_reshape"] = rpn_cls_score_reshape
        self._predictions["rpn_cls_prob"] = rpn_cls_prob_reshape
        self._predictions["rpn_bbox_pred"] = rpn_bbox_pred 
開發者ID:Sanster,項目名稱:tf_ctpn,代碼行數:50,代碼來源:network.py

示例15: P_Net

# 需要導入模塊: from tensorflow.contrib import slim [as 別名]
# 或者: from tensorflow.contrib.slim import xavier_initializer [as 別名]
def P_Net(inputs,label=None,bbox_target=None,landmark_target=None,training=True):
    #define common param
    with slim.arg_scope([slim.conv2d],
                        activation_fn=prelu,
                        weights_initializer=slim.xavier_initializer(),
                        biases_initializer=tf.zeros_initializer(),
                        weights_regularizer=slim.l2_regularizer(0.0005),
                        padding='valid'):
        print( inputs.get_shape())
        net = slim.conv2d(inputs, 10, 3, stride=1,scope='conv1')
        print( net.get_shape())
        net = slim.max_pool2d(net, kernel_size=[2,2], stride=2, scope='pool1', padding='SAME')
        print( net.get_shape())
        net = slim.conv2d(net,num_outputs=16,kernel_size=[3,3],stride=1,scope='conv2')
        print( net.get_shape())
        net = slim.conv2d(net,num_outputs=32,kernel_size=[3,3],stride=1,scope='conv3')
        print( net.get_shape())
        #batch*H*W*2
        conv4_1 = slim.conv2d(net,num_outputs=2,kernel_size=[1,1],stride=1,scope='conv4_1',activation_fn=tf.nn.softmax)
        #conv4_1 = slim.conv2d(net,num_outputs=1,kernel_size=[1,1],stride=1,scope='conv4_1',activation_fn=tf.nn.sigmoid)

        print( conv4_1.get_shape())
        #batch*H*W*4
        bbox_pred = slim.conv2d(net,num_outputs=4,kernel_size=[1,1],stride=1,scope='conv4_2',activation_fn=None)
        print( bbox_pred.get_shape())
        #batch*H*W*10
        landmark_pred = slim.conv2d(net,num_outputs=10,kernel_size=[1,1],stride=1,scope='conv4_3',activation_fn=None)
        print( landmark_pred.get_shape())
        #cls_prob_original = conv4_1
        #bbox_pred_original = bbox_pred
        if training:
            #batch*2
            cls_prob = tf.squeeze(conv4_1,[1,2],name='cls_prob')
            cls_loss = cls_ohem(cls_prob,label)
            #batch
            bbox_pred = tf.squeeze(bbox_pred,[1,2],name='bbox_pred')
            bbox_loss = bbox_ohem(bbox_pred,bbox_target,label)
            #batch*10
            landmark_pred = tf.squeeze(landmark_pred,[1,2],name="landmark_pred")
            landmark_loss = landmark_ohem(landmark_pred,landmark_target,label)

            accuracy = cal_accuracy(cls_prob,label)
            L2_loss = tf.add_n(slim.losses.get_regularization_losses())
            return cls_loss,bbox_loss,landmark_loss,L2_loss,accuracy
        #test
        else:
            #when test,batch_size = 1
            cls_pro_test = tf.squeeze(conv4_1, axis=0)
            bbox_pred_test = tf.squeeze(bbox_pred,axis=0)
            landmark_pred_test = tf.squeeze(landmark_pred,axis=0)
            return cls_pro_test,bbox_pred_test,landmark_pred_test 
開發者ID:huseinzol05,項目名稱:Gather-Deployment,代碼行數:53,代碼來源:mtcnn_model.py


注:本文中的tensorflow.contrib.slim.xavier_initializer方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。