當前位置: 首頁>>代碼示例>>Python>>正文


Python slim.variable方法代碼示例

本文整理匯總了Python中tensorflow.contrib.slim.variable方法的典型用法代碼示例。如果您正苦於以下問題:Python slim.variable方法的具體用法?Python slim.variable怎麽用?Python slim.variable使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.contrib.slim的用法示例。


在下文中一共展示了slim.variable方法的12個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: convert_varname

# 需要導入模塊: from tensorflow.contrib import slim [as 別名]
# 或者: from tensorflow.contrib.slim import variable [as 別名]
def convert_varname(self, vname, to_namespace=None):
        """
        Utility function that converts variable names to the input namespace.

        Parameters
        ----------
        vname: string
            The variable name.

        to_namespace: string
            The target namespace.

        Returns
        -------

        """
        namespace = vname.split("/")[0]
        if to_namespace is None:
            to_namespace = self.name
        return vname.replace(namespace, to_namespace) 
開發者ID:danielzuegner,項目名稱:nettack,代碼行數:22,代碼來源:GCN.py

示例2: mat_transform

# 需要導入模塊: from tensorflow.contrib import slim [as 別名]
# 或者: from tensorflow.contrib.slim import variable [as 別名]
def mat_transform(input, caps_num_c, regularizer, tag=False):
    batch_size = int(input.get_shape()[0])
    caps_num_i = int(input.get_shape()[1])
    output = tf.reshape(input, shape=[batch_size, caps_num_i, 1, 4, 4])
    # the output of capsule is miu, the mean of a Gaussian, and activation, the sum of probabilities
    # it has no relationship with the absolute values of w and votes
    # using weights with bigger stddev helps numerical stability
    w = slim.variable('w', shape=[1, caps_num_i, caps_num_c, 4, 4], dtype=tf.float32,
                      initializer=tf.truncated_normal_initializer(mean=0.0, stddev=1.0),
                      regularizer=regularizer)

    w = tf.tile(w, [batch_size, 1, 1, 1, 1])
    output = tf.tile(output, [1, 1, caps_num_c, 1, 1])
    votes = tf.reshape(tf.matmul(output, w), [batch_size, caps_num_i, caps_num_c, 16])

    return votes 
開發者ID:www0wwwjs1,項目名稱:Matrix-Capsules-EM-Tensorflow,代碼行數:18,代碼來源:capsnet_em.py

示例3: vec_transform

# 需要導入模塊: from tensorflow.contrib import slim [as 別名]
# 或者: from tensorflow.contrib.slim import variable [as 別名]
def vec_transform(input, caps_num_out, channel_num_out):
    batch_size = int(input.get_shape()[0])
    caps_num_in = int(input.get_shape()[1])
    channel_num_in = int(input.get_shape()[-1])

    w = slim.variable('w', shape=[1, caps_num_out, caps_num_in, channel_num_in, channel_num_out], dtype=tf.float32,
                      initializer=tf.random_normal_initializer(mean=0.0, stddev=0.01)) #

    w = tf.tile(w, [batch_size, 1, 1, 1, 1])
    output = tf.reshape(input, shape=[batch_size, 1, caps_num_in, 1, channel_num_in])
    output = tf.tile(output, [1, caps_num_out, 1, 1, 1])

    output = tf.reshape(tf.matmul(output, w), [batch_size, caps_num_out, caps_num_in, channel_num_out])

    return output

# input should be a tensor with size as [batch_size, caps_num_out, channel_num] 
開發者ID:www0wwwjs1,項目名稱:Matrix-Capsules-EM-Tensorflow,代碼行數:19,代碼來源:capsnet_dynamic_routing.py

示例4: average_gradients

# 需要導入模塊: from tensorflow.contrib import slim [as 別名]
# 或者: from tensorflow.contrib.slim import variable [as 別名]
def average_gradients(tower_grads):
    """Calculate the average gradient for each shared variable across all towers.
    Note that this function provides a synchronization point across all towers.
    Args:
      tower_grads: List of lists of (gradient, variable) tuples. The outer list
        is over individual gradients. The inner list is over the gradient
        calculation for each tower.
    Returns:
       List of pairs of (gradient, variable) where the gradient has been averaged
       across all towers.
    """
    average_grads = []
    for grad_and_vars in zip(*tower_grads):
        # Note that each grad_and_vars looks like the following:
        #   ((grad0_gpu0, var0_gpu0), ... , (grad0_gpuN, var0_gpuN))
        grads = []
        for g, _ in grad_and_vars:
            # Add 0 dimension to the gradients to represent the tower.
            expanded_g = tf.expand_dims(g, 0)

            # Append on a 'tower' dimension which we will average over below.
            grads.append(expanded_g)

        # Average over the 'tower' dimension.
        grad = tf.concat(axis=0, values=grads)
        grad = tf.reduce_mean(grad, 0)

        # Keep in mind that the Variables are redundant because they are shared
        # across towers. So .. we will just return the first tower's pointer to
        # the Variable.
        v = grad_and_vars[0][1]
        grad_and_var = (grad, v)
        average_grads.append(grad_and_var)
    return average_grads 
開發者ID:Thinklab-SJTU,項目名稱:R3Det_Tensorflow,代碼行數:36,代碼來源:multi_gpu_train_r3det_plusplus.py

示例5: sum_gradients

# 需要導入模塊: from tensorflow.contrib import slim [as 別名]
# 或者: from tensorflow.contrib.slim import variable [as 別名]
def sum_gradients(tower_grads):
    """Calculate the average gradient for each shared variable across all towers.
    Note that this function provides a synchronization point across all towers.
    Args:
      tower_grads: List of lists of (gradient, variable) tuples. The outer list
        is over individual gradients. The inner list is over the gradient
        calculation for each tower.
    Returns:
       List of pairs of (gradient, variable) where the gradient has been averaged
       across all towers.
    """
    sum_grads = []
    for grad_and_vars in zip(*tower_grads):
        # Note that each grad_and_vars looks like the following:
        #   ((grad0_gpu0, var0_gpu0), ... , (grad0_gpuN, var0_gpuN))
        grads = []
        for g, _ in grad_and_vars:
            # Add 0 dimension to the gradients to represent the tower.
            expanded_g = tf.expand_dims(g, 0)

            # Append on a 'tower' dimension which we will average over below.
            grads.append(expanded_g)

        # Average over the 'tower' dimension.
        grad = tf.concat(axis=0, values=grads)
        grad = tf.reduce_sum(grad, 0)

        # Keep in mind that the Variables are redundant because they are shared
        # across towers. So .. we will just return the first tower's pointer to
        # the Variable.
        v = grad_and_vars[0][1]
        grad_and_var = (grad, v)
        sum_grads.append(grad_and_var)
    return sum_grads 
開發者ID:Thinklab-SJTU,項目名稱:R3Det_Tensorflow,代碼行數:36,代碼來源:multi_gpu_train_r3det_plusplus.py

示例6: _make_graph

# 需要導入模塊: from tensorflow.contrib import slim [as 別名]
# 或者: from tensorflow.contrib.slim import variable [as 別名]
def _make_graph(self):
        self.logger.info("Generating testing graph on {} GPUs ...".format(self.cfg.nr_gpus))

        with tf.variable_scope(tf.get_variable_scope()):
            for i in range(self.cfg.nr_gpus):
                with tf.device('/gpu:%d' % i):
                    with tf.name_scope('tower_%d' % i) as name_scope:
                        with slim.arg_scope([slim.model_variable, slim.variable], device='/device:CPU:0'):
                            self.net.make_network(is_train=False)
                            self._input_list.append(self.net.get_inputs())
                            self._output_list.append(self.net.get_outputs())

                        tf.get_variable_scope().reuse_variables()

        self._outputs = aggregate_batch(self._output_list)

        # run_meta = tf.RunMetadata()
        # opts = tf.profiler.ProfileOptionBuilder.float_operation()
        # flops = tf.profiler.profile(self.sess.graph, run_meta=run_meta, cmd='op', options=opts)
        #
        # opts = tf.profiler.ProfileOptionBuilder.trainable_variables_parameter()
        # params = tf.profiler.profile(self.sess.graph, run_meta=run_meta, cmd='op', options=opts)

        # print("{:,} --- {:,}".format(flops.total_float_ops, params.total_parameters))
        # from IPython import embed; embed()

        return self._outputs 
開發者ID:chenyilun95,項目名稱:tf-cpn,代碼行數:29,代碼來源:base.py

示例7: tiny

# 需要導入模塊: from tensorflow.contrib import slim [as 別名]
# 或者: from tensorflow.contrib.slim import variable [as 別名]
def tiny(net, classes, num_anchors, training=False, center=True):
    def batch_norm(net):
        net = slim.batch_norm(net, center=center, scale=True, epsilon=1e-5, is_training=training)
        if not center:
            net = tf.nn.bias_add(net, slim.variable('biases', shape=[tf.shape(net)[-1]], initializer=tf.zeros_initializer()))
        return net
    scope = __name__.split('.')[-2] + '_' + inspect.stack()[0][3]
    net = tf.identity(net, name='%s/input' % scope)
    with slim.arg_scope([slim.layers.conv2d], kernel_size=[3, 3], weights_initializer=tf.truncated_normal_initializer(stddev=0.1), normalizer_fn=batch_norm, activation_fn=leaky_relu), slim.arg_scope([slim.layers.max_pool2d], kernel_size=[2, 2], padding='SAME'):
        index = 0
        channels = 16
        for _ in range(5):
            net = slim.layers.conv2d(net, channels, scope='%s/conv%d' % (scope, index))
            net = slim.layers.max_pool2d(net, scope='%s/max_pool%d' % (scope, index))
            index += 1
            channels *= 2
        net = slim.layers.conv2d(net, channels, scope='%s/conv%d' % (scope, index))
        net = slim.layers.max_pool2d(net, stride=1, scope='%s/max_pool%d' % (scope, index))
        index += 1
        channels *= 2
        net = slim.layers.conv2d(net, channels, scope='%s/conv%d' % (scope, index))
        index += 1
        net = slim.layers.conv2d(net, channels, scope='%s/conv%d' % (scope, index))
    net = slim.layers.conv2d(net, num_anchors * (5 + classes), kernel_size=[1, 1], activation_fn=None, scope='%s/conv' % scope)
    net = tf.identity(net, name='%s/output' % scope)
    return scope, net 
開發者ID:ruiminshen,項目名稱:yolo-tf,代碼行數:28,代碼來源:inference.py

示例8: _make_graph

# 需要導入模塊: from tensorflow.contrib import slim [as 別名]
# 或者: from tensorflow.contrib.slim import variable [as 別名]
def _make_graph(self):
        self.logger.info("Generating testing graph on {} GPUs ...".format(self.cfg.num_gpus))

        with tf.variable_scope(tf.get_variable_scope()):
            for i in range(self.cfg.num_gpus):
                with tf.device('/gpu:%d' % i):
                    with tf.name_scope('tower_%d' % i) as name_scope:
                        with slim.arg_scope([slim.model_variable, slim.variable], device='/device:CPU:0'):
                            self.net.make_network(is_train=False)
                            self._input_list.append(self.net.get_inputs())
                            self._output_list.append(self.net.get_outputs())

                        tf.get_variable_scope().reuse_variables()

        self._outputs = aggregate_batch(self._output_list)

        # run_meta = tf.RunMetadata()
        # opts = tf.profiler.ProfileOptionBuilder.float_operation()
        # flops = tf.profiler.profile(self.sess.graph, run_meta=run_meta, cmd='op', options=opts)
        #
        # opts = tf.profiler.ProfileOptionBuilder.trainable_variables_parameter()
        # params = tf.profiler.profile(self.sess.graph, run_meta=run_meta, cmd='op', options=opts)

        # print("{:,} --- {:,}".format(flops.total_float_ops, params.total_parameters))
        # from IPython import embed; embed()

        return self._outputs 
開發者ID:mks0601,項目名稱:PoseFix_RELEASE,代碼行數:29,代碼來源:base.py

示例9: average_gradients

# 需要導入模塊: from tensorflow.contrib import slim [as 別名]
# 或者: from tensorflow.contrib.slim import variable [as 別名]
def average_gradients(tower_grads):
  """Calculate the average gradient for each shared variable across all towers.

  Note that this function provides a synchronization point across all towers.

  Args:
    tower_grads: List of lists of (gradient, variable) tuples. The outer list
      is over individual gradients. The inner list is over the gradient
      calculation for each tower.
  Returns:
     List of pairs of (gradient, variable) where the gradient has been averaged
     across all towers.
  """
  average_grads = []
  for grad_and_vars in zip(*tower_grads):
    # Note that each grad_and_vars looks like the following:
    #   ((grad0_gpu0, var0_gpu0), ... , (grad0_gpuN, var0_gpuN))
    grads = []
    for g, _ in grad_and_vars:
      # Add 0 dimension to the gradients to represent the tower.
      expanded_g = tf.expand_dims(g, 0)

      # Append on a 'tower' dimension which we will average over below.
      grads.append(expanded_g)

    # Average over the 'tower' dimension.
    grad = tf.concat(axis=0, values=grads)
    grad = tf.reduce_mean(grad, 0)

    # Keep in mind that the Variables are redundant because they are shared
    # across towers. So .. we will just return the first tower's pointer to
    # the Variable.
    v = grad_and_vars[0][1]
    grad_and_var = (grad, v)
    average_grads.append(grad_and_var)
  return average_grads 
開發者ID:bourdakos1,項目名稱:capsule-networks,代碼行數:38,代碼來源:distributed_train.py

示例10: __init__

# 需要導入模塊: from tensorflow.contrib import slim [as 別名]
# 或者: from tensorflow.contrib.slim import variable [as 別名]
def __init__(self, name, inputs, tower_setup, for_imagenet_classification=False):
    super(ResNet50, self).__init__()
    #for now always freeze the batch norm of the resnet
    inp, n_features_inp = prepare_input(inputs)
    #for grayscale
    if n_features_inp == 1:
      inp = tf.concat([inp, inp, inp], axis=-1)
    else:
      assert n_features_inp == 3
    #to keep the preprocessing consistent with our usual preprocessing, revert the std normalization
    from ReID_net.datasets.Util.Normalization import IMAGENET_RGB_STD
    #I double checked it, this seems to be the right preprocessing
    inp = inp * IMAGENET_RGB_STD * 255

    num_classes = 1000 if for_imagenet_classification else None
    #note that we do not add the name to the variable scope at the moment, so that if we would use multiple resnets
    #in the same network, this will throw an error.
    #but if we add the name, the loading of pretrained weights will be difficult
    with slim.arg_scope(slim.nets.resnet_v1.resnet_arg_scope()):
      with slim.arg_scope([slim.model_variable, slim.variable], device=tower_setup.variable_device):
        logits, end_points = slim.nets.resnet_v1.resnet_v1_50(inp, num_classes=num_classes, is_training=False)
    #mapping from https://github.com/wuzheng-sjtu/FastFPN/blob/master/libs/nets/pyramid_network.py
    mapping = {"C1": "resnet_v1_50/conv1/Relu:0",
               "C2": "resnet_v1_50/block1/unit_2/bottleneck_v1",
               "C3": "resnet_v1_50/block2/unit_3/bottleneck_v1",
               "C4": "resnet_v1_50/block3/unit_5/bottleneck_v1",
               "C5": "resnet_v1_50/block4/unit_3/bottleneck_v1"}
    if for_imagenet_classification:
      self.outputs = [tf.nn.softmax(logits)]
    else:
      # use C3 up to C5
      self.outputs = [end_points[mapping[c]] for c in ["C3", "C4", "C5"]]
    self.n_params = 25600000  # roughly 25.6M 
開發者ID:JonathonLuiten,項目名稱:PReMVOS,代碼行數:35,代碼來源:NetworkLayers.py

示例11: darknet

# 需要導入模塊: from tensorflow.contrib import slim [as 別名]
# 或者: from tensorflow.contrib.slim import variable [as 別名]
def darknet(net, classes, num_anchors, training=False, center=True):
    def batch_norm(net):
        net = slim.batch_norm(net, center=center, scale=True, epsilon=1e-5, is_training=training)
        if not center:
            net = tf.nn.bias_add(net, slim.variable('biases', shape=[tf.shape(net)[-1]], initializer=tf.zeros_initializer()))
        return net
    scope = __name__.split('.')[-2] + '_' + inspect.stack()[0][3]
    net = tf.identity(net, name='%s/input' % scope)
    with slim.arg_scope([slim.layers.conv2d], kernel_size=[3, 3], normalizer_fn=batch_norm, activation_fn=leaky_relu), slim.arg_scope([slim.layers.max_pool2d], kernel_size=[2, 2], padding='SAME'):
        index = 0
        channels = 32
        for _ in range(2):
            net = slim.layers.conv2d(net, channels, scope='%s/conv%d' % (scope, index))
            net = slim.layers.max_pool2d(net, scope='%s/max_pool%d' % (scope, index))
            index += 1
            channels *= 2
        for _ in range(2):
            net = slim.layers.conv2d(net, channels, scope='%s/conv%d' % (scope, index))
            index += 1
            net = slim.layers.conv2d(net, channels / 2, kernel_size=[1, 1], scope='%s/conv%d' % (scope, index))
            index += 1
            net = slim.layers.conv2d(net, channels, scope='%s/conv%d' % (scope, index))
            net = slim.layers.max_pool2d(net, scope='%s/max_pool%d' % (scope, index))
            index += 1
            channels *= 2
        net = slim.layers.conv2d(net, channels, scope='%s/conv%d' % (scope, index))
        index += 1
        net = slim.layers.conv2d(net, channels / 2, kernel_size=[1, 1], scope='%s/conv%d' % (scope, index))
        index += 1
        net = slim.layers.conv2d(net, channels, scope='%s/conv%d' % (scope, index))
        index += 1
        net = slim.layers.conv2d(net, channels / 2, kernel_size=[1, 1], scope='%s/conv%d' % (scope, index))
        index += 1
        net = slim.layers.conv2d(net, channels, scope='%s/conv%d' % (scope, index))
        passthrough = tf.identity(net, name=scope + '/passthrough')
        net = slim.layers.max_pool2d(net, scope='%s/max_pool%d' % (scope, index))
        index += 1
        channels *= 2
        # downsampling finished
        net = slim.layers.conv2d(net, channels, scope='%s/conv%d' % (scope, index))
        index += 1
        net = slim.layers.conv2d(net, channels / 2, kernel_size=[1, 1], scope='%s/conv%d' % (scope, index))
        index += 1
        net = slim.layers.conv2d(net, channels, scope='%s/conv%d' % (scope, index))
        index += 1
        net = slim.layers.conv2d(net, channels / 2, kernel_size=[1, 1], scope='%s/conv%d' % (scope, index))
        index += 1
        net = slim.layers.conv2d(net, channels, scope='%s/conv%d' % (scope, index))
        index += 1
        net = slim.layers.conv2d(net, channels, scope='%s/conv%d' % (scope, index))
        index += 1
        net = slim.layers.conv2d(net, channels, scope='%s/conv%d' % (scope, index))
        index += 1
        with tf.name_scope(scope):
            _net = reorg(passthrough)
        net = tf.concat([_net, net], 3, name='%s/concat%d' % (scope, index))
        net = slim.layers.conv2d(net, channels, scope='%s/conv%d' % (scope, index))
    net = slim.layers.conv2d(net, num_anchors * (5 + classes), kernel_size=[1, 1], activation_fn=None, scope='%s/conv' % scope)
    net = tf.identity(net, name='%s/output' % scope)
    return scope, net 
開發者ID:ruiminshen,項目名稱:yolo-tf,代碼行數:62,代碼來源:inference.py

示例12: average_gradients

# 需要導入模塊: from tensorflow.contrib import slim [as 別名]
# 或者: from tensorflow.contrib.slim import variable [as 別名]
def average_gradients(tower_grads):
  """Compute average gradients across all towers.
  
  Calculate the average gradient for each shared variable across all towers.
  Note that this function provides a synchronization point across all towers.
  
  Credit:
    https://github.com/naturomics/CapsNet-
    Tensorflow/blob/master/dist_version/distributed_train.py
  Args:
    tower_grads: 
      List of lists of (gradient, variable) tuples. The outer list is over 
      individual gradients. The inner list is over the gradient calculation for       each tower.
  Returns:
    average_grads:
      List of pairs of (gradient, variable) where the gradient has been 
      averaged across all towers.
  """
  
  average_grads = []
  for grad_and_vars in zip(*tower_grads):
  # Note that each grad_and_vars looks like the following:
  #   ((grad0_gpu0, var0_gpu0), ... , (grad0_gpuN, var0_gpuN))
    grads = []
    for g, _ in grad_and_vars:
      # Add 0 dimension to the gradients to represent the tower.
      expanded_g = tf.expand_dims(g, 0)

      # Append on a 'tower' dimension which we will average over below.
      grads.append(expanded_g)

    # Average over the 'tower' dimension.
    grad = tf.concat(axis=0, values=grads)
    grad = tf.reduce_mean(grad, 0)

    # Keep in mind that the Variables are redundant because they are shared
    # across towers. So .. we will just return the first tower's pointer to
    # the Variable.
    v = grad_and_vars[0][1]
    grad_and_var = (grad, v)
    average_grads.append(grad_and_var)
    
  return average_grads 
開發者ID:IBM,項目名稱:matrix-capsules-with-em-routing,代碼行數:45,代碼來源:train_val.py


注:本文中的tensorflow.contrib.slim.variable方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。