當前位置: 首頁>>代碼示例>>Python>>正文


Python slim.repeat方法代碼示例

本文整理匯總了Python中tensorflow.contrib.slim.repeat方法的典型用法代碼示例。如果您正苦於以下問題:Python slim.repeat方法的具體用法?Python slim.repeat怎麽用?Python slim.repeat使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.contrib.slim的用法示例。


在下文中一共展示了slim.repeat方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _image_to_head

# 需要導入模塊: from tensorflow.contrib import slim [as 別名]
# 或者: from tensorflow.contrib.slim import repeat [as 別名]
def _image_to_head(self, is_training, reuse=None):
        with tf.variable_scope(self._scope, self._scope, reuse=reuse):
            net = slim.repeat(self._image, 2, slim.conv2d, 64, [3, 3],
                              trainable=False, scope='conv1')
            net = slim.max_pool2d(net, [2, 2], padding='SAME', scope='pool1')
            net = slim.repeat(net, 2, slim.conv2d, 128, [3, 3],
                              trainable=False, scope='conv2')
            net = slim.max_pool2d(net, [2, 2], padding='SAME', scope='pool2')
            net = slim.repeat(net, 3, slim.conv2d, 256, [3, 3],
                              trainable=is_training, scope='conv3')
            net = slim.max_pool2d(net, [2, 2], padding='SAME', scope='pool3')

            net = slim.repeat(net, 3, slim.conv2d, 512, [3, 3],
                              trainable=is_training, scope='conv4')
            self.end_points['conv4_3'] = net
            net = slim.max_pool2d(net, [2, 2], padding='SAME', scope='pool4')
            net = slim.repeat(net, 3, slim.conv2d, 512, [3, 3],
                              trainable=is_training, scope='conv5')
            self.end_points['conv5_3'] = net
        self._act_summaries.append(net)
        self._layers['head'] = net 
開發者ID:wanjinchang,項目名稱:SSH-TensorFlow,代碼行數:23,代碼來源:vgg16.py

示例2: _image_to_head

# 需要導入模塊: from tensorflow.contrib import slim [as 別名]
# 或者: from tensorflow.contrib.slim import repeat [as 別名]
def _image_to_head(self, is_training, reuse=None):
        with tf.variable_scope(self._scope, self._scope, reuse=reuse):
            net = slim.repeat(self._image, 2, slim.conv2d, 64, [3, 3],
                              trainable=True, scope='conv1')
            net = slim.max_pool2d(net, [2, 2], padding='SAME', scope='pool1')
            net = slim.repeat(net, 2, slim.conv2d, 128, [3, 3],
                              trainable=True, scope='conv2')
            net = slim.max_pool2d(net, [2, 2], padding='SAME', scope='pool2')
            net = slim.repeat(net, 3, slim.conv2d, 256, [3, 3],
                              trainable=True, scope='conv3')
            net = slim.max_pool2d(net, [2, 2], padding='SAME', scope='pool3')
            net = slim.repeat(net, 3, slim.conv2d, 512, [3, 3],
                              trainable=True, scope='conv4')
            net = slim.max_pool2d(net, [2, 2], padding='SAME', scope='pool4')
            net = slim.repeat(net, 3, slim.conv2d, 512, [3, 3],
                              trainable=True, scope='conv5')

        self._act_summaries.append(net)
        self._layers['head'] = net

        return net 
開發者ID:Sanster,項目名稱:tf_ctpn,代碼行數:23,代碼來源:vgg16.py

示例3: _image_to_head

# 需要導入模塊: from tensorflow.contrib import slim [as 別名]
# 或者: from tensorflow.contrib.slim import repeat [as 別名]
def _image_to_head(self, is_training, reuse=None):
        with tf.variable_scope(self._vgg_scope, self._vgg_scope, reuse=reuse):
            net = slim.repeat(self._image, 2, slim.conv2d, 64, [3, 3],
                              trainable=False, scope='conv1')
            net = slim.max_pool2d(net, [2, 2], padding='SAME', scope='pool1')
            net = slim.repeat(net, 2, slim.conv2d, 128, [3, 3],
                              trainable=False, scope='conv2')
            net = slim.max_pool2d(net, [2, 2], padding='SAME', scope='pool2')
            net = slim.repeat(net, 3, slim.conv2d, 256, [3, 3],
                              trainable=is_training, scope='conv3')
            net = slim.max_pool2d(net, [2, 2], padding='SAME', scope='pool3')
            net = slim.repeat(net, 3, slim.conv2d, 512, [3, 3],
                              trainable=is_training, scope='conv4')
            net = slim.max_pool2d(net, [2, 2], padding='SAME', scope='pool4')
            net = slim.repeat(net, 3, slim.conv2d, 512, [3, 3],
                              trainable=is_training, scope='conv5')

        self._act_summaries.append(net)
        self._layers['head'] = net

        return net 
開發者ID:InnerPeace-Wu,項目名稱:densecap-tensorflow,代碼行數:23,代碼來源:vgg16.py

示例4: _image_to_head

# 需要導入模塊: from tensorflow.contrib import slim [as 別名]
# 或者: from tensorflow.contrib.slim import repeat [as 別名]
def _image_to_head(self, is_training, reuse=None):
    with tf.variable_scope(self._scope, self._scope, reuse=reuse):
      net = slim.repeat(self._image, 2, slim.conv2d, 64, [3, 3],
                          trainable=False, scope='conv1')
      net = slim.max_pool2d(net, [2, 2], padding='SAME', scope='pool1')
      net = slim.repeat(net, 2, slim.conv2d, 128, [3, 3],
                        trainable=False, scope='conv2')
      net = slim.max_pool2d(net, [2, 2], padding='SAME', scope='pool2')
      net = slim.repeat(net, 3, slim.conv2d, 256, [3, 3],
                        trainable=is_training, scope='conv3')
      net = slim.max_pool2d(net, [2, 2], padding='SAME', scope='pool3')
      net = slim.repeat(net, 3, slim.conv2d, 512, [3, 3],
                        trainable=is_training, scope='conv4')
      net = slim.max_pool2d(net, [2, 2], padding='SAME', scope='pool4')
      net = slim.repeat(net, 3, slim.conv2d, 512, [3, 3],
                        trainable=is_training, scope='conv5')

    self._act_summaries.append(net)
    self._layers['head'] = net
    
    return net 
開發者ID:endernewton,項目名稱:tf-faster-rcnn,代碼行數:23,代碼來源:vgg16.py

示例5: vgg16

# 需要導入模塊: from tensorflow.contrib import slim [as 別名]
# 或者: from tensorflow.contrib.slim import repeat [as 別名]
def vgg16(inputs, num_classes, batch_size):
    with slim.arg_scope([slim.conv2d, slim.fully_connected],
                        activation_fn=tf.nn.relu,
                        weights_initializer=tf.truncated_normal_initializer(0.0, 0.01)):
        net = slim.repeat(inputs, 2, slim.conv2d, 64, [3, 3], padding="SAME", scope='conv1')
        net = slim.max_pool2d(net, [2, 2], scope='pool1')
        net = slim.repeat(net, 2, slim.conv2d, 128, [3, 3], padding="SAME", scope='conv2')
        net = slim.max_pool2d(net, [2, 2], scope='pool2')
        net = slim.repeat(net, 3, slim.conv2d, 256, [3, 3], padding="SAME", scope='conv3')
        net = slim.max_pool2d(net, [2, 2], scope='pool3')
        net = slim.repeat(net, 3, slim.conv2d, 512, [3, 3], padding="SAME", scope='conv4')
        net = slim.max_pool2d(net, [2, 2], scope='pool4')
        net = slim.repeat(net, 3, slim.conv2d, 512, [3, 3], padding="SAME", scope='conv5')
        net = slim.max_pool2d(net, [2, 2], scope='pool5')
        net = tf.reshape(net, (batch_size, 7 * 7 * 512))
        net = slim.fully_connected(net, 4096, scope='fc6')
        net = slim.dropout(net, 0.5, scope='dropout6')
        net = slim.fully_connected(net, 4096, scope='fc7')
        net = slim.dropout(net, 0.5, scope='dropout7')
        net = slim.fully_connected(net, 1000, activation_fn=None, scope='fc8')
    return net 
開發者ID:aizvorski,項目名稱:vgg-benchmarks,代碼行數:23,代碼來源:benchmark_tensorflow.py

示例6: get_repeat

# 需要導入模塊: from tensorflow.contrib import slim [as 別名]
# 或者: from tensorflow.contrib.slim import repeat [as 別名]
def get_repeat(end_points, prefix, final_endpoint):
  """Simulate `slim.repeat`, and add to endpoints dictionary."""

  def repeat(net, repetitions, layer, *args, **kwargs):
    base_scope = kwargs['scope']
    add_and_check_is_final = get_add_and_check_is_final(end_points, prefix,
                                                        final_endpoint)
    with tf.variable_scope(base_scope, [net]):
      for i in xrange(repetitions):
        kwargs['scope'] = base_scope + '_' + str(i + 1)
        net = layer(net, *args, **kwargs)
        if add_and_check_is_final('%s_%i' % (base_scope, i), net):
          break
      return net

  return repeat 
開發者ID:brain-research,項目名稱:long-term-video-prediction-without-supervision,代碼行數:18,代碼來源:tf_ops.py

示例7: encoder

# 需要導入模塊: from tensorflow.contrib import slim [as 別名]
# 或者: from tensorflow.contrib.slim import repeat [as 別名]
def encoder(self, x):
        """ Convolutional variational encoder to encode image into a low-dimensional latent code
        If config.conv == False it is a MLP VAE. If config.use_vae == False, it is a normal encoder
        :param x: sequence of images
        :return: a, a_mu, a_var
        """
        with tf.variable_scope('vae/encoder'):
            if self.config.conv:
                x_flat_conv = tf.reshape(x, (-1, self.d1, self.d2, 1))
                enc_hidden = slim.stack(x_flat_conv,
                                        slim.conv2d,
                                        self.num_filters,
                                        kernel_size=self.config.filter_size,
                                        stride=2,
                                        activation_fn=self.activation_fn,
                                        padding='SAME')
                enc_flat = slim.flatten(enc_hidden)
                self.enc_shape = enc_hidden.get_shape().as_list()[1:]

            else:
                x_flat = tf.reshape(x, (-1, self.d1 * self.d2))
                enc_flat = slim.repeat(x_flat, self.config.num_layers, slim.fully_connected,
                                       self.config.vae_num_units, self.activation_fn)

            a_mu = slim.fully_connected(enc_flat, self.config.dim_a, activation_fn=None)
            if self.config.use_vae:
                a_var = slim.fully_connected(enc_flat, self.config.dim_a, activation_fn=tf.nn.sigmoid)
                a_var = self.config.noise_emission * a_var
                a = simple_sample(a_mu, a_var)
            else:
                a_var = tf.constant(1., dtype=tf.float32, shape=())
                a = a_mu
            a_seq = tf.reshape(a, tf.stack((-1, self.ph_steps, self.config.dim_a)))
        return a_seq, a_mu, a_var 
開發者ID:simonkamronn,項目名稱:kvae,代碼行數:36,代碼來源:KalmanVariationalAutoencoder.py

示例8: encoder

# 需要導入模塊: from tensorflow.contrib import slim [as 別名]
# 或者: from tensorflow.contrib.slim import repeat [as 別名]
def encoder(self, images, is_training):
        activation_fn = leaky_relu  # tf.nn.relu
        weight_decay = 0.0
        with tf.variable_scope('encoder'):
            with slim.arg_scope([slim.batch_norm],
                                is_training=is_training):
                with slim.arg_scope([slim.conv2d, slim.fully_connected],
                                    weights_initializer=tf.truncated_normal_initializer(stddev=0.1),
                                    weights_regularizer=slim.l2_regularizer(weight_decay),
                                    normalizer_fn=slim.batch_norm,
                                    normalizer_params=self.batch_norm_params):
                    net = images
                    
                    net = slim.conv2d(net, 32, [4, 4], 2, activation_fn=activation_fn, scope='Conv2d_1a')
                    net = slim.repeat(net, 3, conv2d_block, 0.1, 32, [4, 4], 1, activation_fn=activation_fn, scope='Conv2d_1b')
                    
                    net = slim.conv2d(net, 64, [4, 4], 2, activation_fn=activation_fn, scope='Conv2d_2a')
                    net = slim.repeat(net, 3, conv2d_block, 0.1, 64, [4, 4], 1, activation_fn=activation_fn, scope='Conv2d_2b')

                    net = slim.conv2d(net, 128, [4, 4], 2, activation_fn=activation_fn, scope='Conv2d_3a')
                    net = slim.repeat(net, 3, conv2d_block, 0.1, 128, [4, 4], 1, activation_fn=activation_fn, scope='Conv2d_3b')

                    net = slim.conv2d(net, 256, [4, 4], 2, activation_fn=activation_fn, scope='Conv2d_4a')
                    net = slim.repeat(net, 3, conv2d_block, 0.1, 256, [4, 4], 1, activation_fn=activation_fn, scope='Conv2d_4b')
                    
                    net = slim.flatten(net)
                    fc1 = slim.fully_connected(net, self.latent_variable_dim, activation_fn=None, normalizer_fn=None, scope='Fc_1')
                    fc2 = slim.fully_connected(net, self.latent_variable_dim, activation_fn=None, normalizer_fn=None, scope='Fc_2')
        return fc1, fc2 
開發者ID:GaoangW,項目名稱:TNT,代碼行數:31,代碼來源:dfc_vae_resnet.py

示例9: decoder

# 需要導入模塊: from tensorflow.contrib import slim [as 別名]
# 或者: from tensorflow.contrib.slim import repeat [as 別名]
def decoder(self, latent_var, is_training):
        activation_fn = leaky_relu  # tf.nn.relu
        weight_decay = 0.0 
        with tf.variable_scope('decoder'):
            with slim.arg_scope([slim.batch_norm],
                                is_training=is_training):
                with slim.arg_scope([slim.conv2d, slim.fully_connected],
                                    weights_initializer=tf.truncated_normal_initializer(stddev=0.1),
                                    weights_regularizer=slim.l2_regularizer(weight_decay),
                                    normalizer_fn=slim.batch_norm,
                                    normalizer_params=self.batch_norm_params):
                    net = slim.fully_connected(latent_var, 4096, activation_fn=None, normalizer_fn=None, scope='Fc_1')
                    net = tf.reshape(net, [-1,4,4,256], name='Reshape')
                    
                    net = tf.image.resize_nearest_neighbor(net, size=(8,8), name='Upsample_1')
                    net = slim.conv2d(net, 128, [3, 3], 1, activation_fn=activation_fn, scope='Conv2d_1a')
                    net = slim.repeat(net, 3, conv2d_block, 0.1, 128, [3, 3], 1, activation_fn=activation_fn, scope='Conv2d_1b')
            
                    net = tf.image.resize_nearest_neighbor(net, size=(16,16), name='Upsample_2')
                    net = slim.conv2d(net, 64, [3, 3], 1, activation_fn=activation_fn, scope='Conv2d_2a')
                    net = slim.repeat(net, 3, conv2d_block, 0.1, 64, [3, 3], 1, activation_fn=activation_fn, scope='Conv2d_2b')
            
                    net = tf.image.resize_nearest_neighbor(net, size=(32,32), name='Upsample_3')
                    net = slim.conv2d(net, 32, [3, 3], 1, activation_fn=activation_fn, scope='Conv2d_3a')
                    net = slim.repeat(net, 3, conv2d_block, 0.1, 32, [3, 3], 1, activation_fn=activation_fn, scope='Conv2d_3b')
            
                    net = tf.image.resize_nearest_neighbor(net, size=(64,64), name='Upsample_4')
                    net = slim.conv2d(net, 3, [3, 3], 1, activation_fn=activation_fn, scope='Conv2d_4a')
                    net = slim.repeat(net, 3, conv2d_block, 0.1, 3, [3, 3], 1, activation_fn=activation_fn, scope='Conv2d_4b')
                    net = slim.conv2d(net, 3, [3, 3], 1, activation_fn=None, scope='Conv2d_4c')
                
        return net 
開發者ID:GaoangW,項目名稱:TNT,代碼行數:34,代碼來源:dfc_vae_resnet.py

示例10: vgg_16

# 需要導入模塊: from tensorflow.contrib import slim [as 別名]
# 或者: from tensorflow.contrib.slim import repeat [as 別名]
def vgg_16(inputs, scope='vgg_16', reuse=False):

    """ VGG-16.

    Parameters
    ----------
    inputs: tensor.
    scope: name of scope.
    reuse: reuse the net if True.

    Returns
    -------
    net: tensor, output tensor.
    end_points: dict, collection of layers.

    """

    with tf.variable_scope(scope, 'vgg_16', [inputs], reuse=reuse) as sc:

        end_points_collection = sc.original_name_scope + '_end_points'
        # Collect outputs for conv2d, fully_connected and max_pool2d.
        with slim.arg_scope(
                [slim.conv2d, slim.fully_connected, slim.max_pool2d],
                outputs_collections=end_points_collection):
            net = slim.repeat(inputs, 2, slim.conv2d, 64, [3, 3],
                              scope='conv1')
            net = slim.max_pool2d(net, [2, 2], scope='pool1')
            net = slim.repeat(net, 2, slim.conv2d, 128, [3, 3], scope='conv2')
            net = slim.max_pool2d(net, [2, 2], scope='pool2')
            net = slim.repeat(net, 3, slim.conv2d, 256, [3, 3], scope='conv3')
            net = slim.max_pool2d(net, [2, 2], scope='pool3')
            net = slim.repeat(net, 3, slim.conv2d, 512, [3, 3], scope='conv4')
            net = slim.max_pool2d(net, [2, 2], scope='pool4')
            net = slim.repeat(net, 3, slim.conv2d, 512, [3, 3], scope='conv5')
            net = slim.max_pool2d(net, [2, 2], scope='pool5')

            # Convert end_points_collection into a end_point dict.
            end_points = slim.utils.convert_collection_to_dict(
                end_points_collection)

    return net, end_points 
開發者ID:HzDmS,項目名稱:gaze_redirection,代碼行數:43,代碼來源:archs.py

示例11: vgg_16

# 需要導入模塊: from tensorflow.contrib import slim [as 別名]
# 或者: from tensorflow.contrib.slim import repeat [as 別名]
def vgg_16(inputs,
           variables_collections=None,
           scope='vgg_16',
           reuse=None):
    """
    modification of vgg_16 in TF-slim
    see original code in https://github.com/tensorflow/models/blob/master/slim/nets/vgg.py
    """
    with tf.variable_scope(scope, 'vgg_16', [inputs]) as sc:
        # Collect outputs for conv2d, fully_connected and max_pool2d.
        with slim.arg_scope([slim.conv2d, slim.fully_connected, slim.max_pool2d]):
            conv1 = slim.repeat(inputs, 2, slim.conv2d, 64, [3, 3], scope='conv1', biases_initializer=None,
                            variables_collections=variables_collections, reuse=reuse)
            pool1, argmax_1 = tf.nn.max_pool_with_argmax(conv1, [1,2,2,1], [1,2,2,1], padding='VALID', name='pool1')
            conv2 = slim.repeat(pool1, 2, slim.conv2d, 128, [3, 3], scope='conv2', biases_initializer=None,
                            variables_collections=variables_collections, reuse=reuse)
            pool2, argmax_2 = tf.nn.max_pool_with_argmax(conv2, [1,2,2,1], [1,2,2,1], padding='VALID', name='pool2')
            conv3 = slim.repeat(pool2, 3, slim.conv2d, 256, [3, 3], scope='conv3', biases_initializer=None,
                            variables_collections=variables_collections, reuse=reuse)
            pool3, argmax_3 = tf.nn.max_pool_with_argmax(conv3, [1,2,2,1], [1,2,2,1], padding='VALID', name='pool3')
            conv4 = slim.repeat(pool3, 3, slim.conv2d, 512, [3, 3], scope='conv4', biases_initializer=None,
                            variables_collections=variables_collections, reuse=reuse)
            pool4, argmax_4 = tf.nn.max_pool_with_argmax(conv4, [1,2,2,1], [1,2,2,1], padding='VALID', name='pool4')
            conv5 = slim.repeat(pool4, 3, slim.conv2d, 512, [3, 3], scope='conv5', biases_initializer=None,
                            variables_collections=variables_collections, reuse=reuse)
            pool5, argmax_5 = tf.nn.max_pool_with_argmax(conv5, [1,2,2,1], [1,2,2,1], padding='VALID', name='pool5')
            # return argmax
            argmax = (argmax_1, argmax_2, argmax_3, argmax_4, argmax_5)
            # return feature maps
            features = (conv1, conv2, conv3, conv4, conv5)
            return pool5, argmax, features 
開發者ID:SaoYan,項目名稱:bgsCNN,代碼行數:33,代碼來源:utilities.py

示例12: vgg_16

# 需要導入模塊: from tensorflow.contrib import slim [as 別名]
# 或者: from tensorflow.contrib.slim import repeat [as 別名]
def vgg_16(inputs, scope='vgg_16'):
  """Computes deep image features as the first two maxpooling layers of a VGG16 network"""
  with tf.variable_scope('vgg_16', 'vgg_16', [inputs], reuse=tf.AUTO_REUSE) as sc:
    end_points_collection = sc.original_name_scope + '_end_points'

    with slim.arg_scope([slim.conv2d, slim.fully_connected, slim.max_pool2d],
                        outputs_collections=end_points_collection):
      net_a = slim.repeat(inputs, 2, slim.conv2d, 64, [3, 3], scope='conv1')
      net_b = slim.max_pool2d(net_a, [2, 2], scope='pool1')
      net_c = slim.repeat(net_b, 2, slim.conv2d, 128, [3, 3], scope='conv2')
      return net_a, net_c 
開發者ID:Phog,項目名稱:DeepBlending,代碼行數:13,代碼來源:train.py

示例13: _image_to_rpn_single

# 需要導入模塊: from tensorflow.contrib import slim [as 別名]
# 或者: from tensorflow.contrib.slim import repeat [as 別名]
def _image_to_rpn_single(self, is_training, initializer, reuse=False):
    """
    Single modality input
    """
    with tf.variable_scope(self._scope, self._scope, reuse=reuse):
      net_rgb = slim.repeat(self._image, 2, slim.conv2d, 64, [3, 3],
                            trainable=is_training and 1 > cfg.VGG16.FIXED_BLOCKS, scope='conv1')
      self._tensor4debug['net_rgb1'] = net_rgb
      net_rgb = slim.max_pool2d(net_rgb, [2, 2], padding='SAME', scope='pool1')
      net_rgb = slim.repeat(net_rgb, 2, slim.conv2d, 128, [3, 3],
                            trainable=is_training and 2 > cfg.VGG16.FIXED_BLOCKS, scope='conv2')
      net_rgb = slim.max_pool2d(net_rgb, [2, 2], padding='SAME', scope='pool2')
      net_rgb = slim.repeat(net_rgb, 3, slim.conv2d, 256, [3, 3],
                             trainable=is_training and 3 > cfg.VGG16.FIXED_BLOCKS, scope='conv3')
      net_rgb = slim.max_pool2d(net_rgb, [2, 2], padding='SAME', scope='pool3')
      net_rgb = slim.repeat(net_rgb, 3, slim.conv2d, 512, [3, 3],
                            trainable=is_training and 4 > cfg.VGG16.FIXED_BLOCKS, scope='conv4')
      if not cfg.REMOVE_POOLING:
        net_rgb = slim.max_pool2d(net_rgb, [2, 2], padding='SAME', scope='pool4')
      net_rgb = slim.repeat(net_rgb, 3, slim.conv2d, 512, [3, 3],
                            trainable=is_training, scope='conv5')

    self._act_summaries.append(net_rgb)
    self._layers['head'] = net_rgb

    self._tensor4debug['net_rgb'] = net_rgb

    return net_rgb 
開發者ID:Li-Chengyang,項目名稱:MSDS-RCNN,代碼行數:30,代碼來源:vgg16.py

示例14: repeat

# 需要導入模塊: from tensorflow.contrib import slim [as 別名]
# 或者: from tensorflow.contrib.slim import repeat [as 別名]
def repeat(inputs, repetitions, layer, layer_dict={}, **kargv):
  outputs = slim.repeat(inputs, repetitions, layer, **kargv)
  _update_dict(layer_dict, kargv['scope'], outputs)
  return outputs 
開發者ID:carpedm20,項目名稱:simulated-unsupervised-tensorflow,代碼行數:6,代碼來源:layers.py

示例15: build_head

# 需要導入模塊: from tensorflow.contrib import slim [as 別名]
# 或者: from tensorflow.contrib.slim import repeat [as 別名]
def build_head(self, is_training):

        # Main network
        # Layer  1
        net = slim.repeat(self._image, 2, slim.conv2d, 64, [3, 3], trainable=False, scope='conv1')
        net = slim.max_pool2d(net, [2, 2], padding='SAME', scope='pool1')

        # Layer 2
        net = slim.repeat(net, 2, slim.conv2d, 128, [3, 3], trainable=False, scope='conv2')
        net = slim.max_pool2d(net, [2, 2], padding='SAME', scope='pool2')

        # Layer 3
        net = slim.repeat(net, 3, slim.conv2d, 256, [3, 3], trainable=is_training, scope='conv3')
        net = slim.max_pool2d(net, [2, 2], padding='SAME', scope='pool3')

        # Layer 4
        net = slim.repeat(net, 3, slim.conv2d, 512, [3, 3], trainable=is_training, scope='conv4')
        net = slim.max_pool2d(net, [2, 2], padding='SAME', scope='pool4')

        # Layer 5
        net = slim.repeat(net, 3, slim.conv2d, 512, [3, 3], trainable=is_training, scope='conv5')

        # Append network to summaries
        self._act_summaries.append(net)

        # Append network as head layer
        self._layers['head'] = net

        return net 
開發者ID:dBeker,項目名稱:Faster-RCNN-TensorFlow-Python3,代碼行數:31,代碼來源:vgg16.py


注:本文中的tensorflow.contrib.slim.repeat方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。