當前位置: 首頁>>代碼示例>>Python>>正文


Python resnet_v1.bottleneck方法代碼示例

本文整理匯總了Python中tensorflow.contrib.slim.python.slim.nets.resnet_v1.bottleneck方法的典型用法代碼示例。如果您正苦於以下問題:Python resnet_v1.bottleneck方法的具體用法?Python resnet_v1.bottleneck怎麽用?Python resnet_v1.bottleneck使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.contrib.slim.python.slim.nets.resnet_v1的用法示例。


在下文中一共展示了resnet_v1.bottleneck方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _resnet_small

# 需要導入模塊: from tensorflow.contrib.slim.python.slim.nets import resnet_v1 [as 別名]
# 或者: from tensorflow.contrib.slim.python.slim.nets.resnet_v1 import bottleneck [as 別名]
def _resnet_small(self,
                    inputs,
                    num_classes=None,
                    global_pool=True,
                    output_stride=None,
                    include_root_block=True,
                    reuse=None,
                    scope='resnet_v1_small'):
    """A shallow and thin ResNet v1 for faster tests."""
    bottleneck = resnet_v1.bottleneck
    blocks = [
        resnet_utils.Block('block1', bottleneck, [(4, 1, 1)] * 2 + [(4, 1, 2)]),
        resnet_utils.Block('block2', bottleneck, [(8, 2, 1)] * 2 + [(8, 2, 2)]),
        resnet_utils.Block('block3', bottleneck,
                           [(16, 4, 1)] * 2 + [(16, 4, 2)]),
        resnet_utils.Block('block4', bottleneck, [(32, 8, 1)] * 2)
    ]
    return resnet_v1.resnet_v1(inputs, blocks, num_classes, global_pool,
                               output_stride, include_root_block, reuse, scope) 
開發者ID:abhisuri97,項目名稱:auto-alt-text-lambda-api,代碼行數:21,代碼來源:resnet_v1_test.py

示例2: testEndPointsV1

# 需要導入模塊: from tensorflow.contrib.slim.python.slim.nets import resnet_v1 [as 別名]
# 或者: from tensorflow.contrib.slim.python.slim.nets.resnet_v1 import bottleneck [as 別名]
def testEndPointsV1(self):
    """Test the end points of a tiny v1 bottleneck network."""
    bottleneck = resnet_v1.bottleneck
    blocks = [
        resnet_utils.Block('block1', bottleneck, [(4, 1, 1), (4, 1, 2)]),
        resnet_utils.Block('block2', bottleneck, [(8, 2, 1), (8, 2, 1)])
    ]
    inputs = create_test_input(2, 32, 16, 3)
    with arg_scope(resnet_utils.resnet_arg_scope()):
      _, end_points = self._resnet_plain(inputs, blocks, scope='tiny')
    expected = [
        'tiny/block1/unit_1/bottleneck_v1/shortcut',
        'tiny/block1/unit_1/bottleneck_v1/shortcut/BatchNorm',
        'tiny/block1/unit_1/bottleneck_v1/conv1',
        'tiny/block1/unit_1/bottleneck_v1/conv2',
        'tiny/block1/unit_1/bottleneck_v1/conv3',
        'tiny/block1/unit_1/bottleneck_v1/conv3/BatchNorm',
        'tiny/block1/unit_2/bottleneck_v1/conv1',
        'tiny/block1/unit_2/bottleneck_v1/conv2',
        'tiny/block1/unit_2/bottleneck_v1/conv3',
        'tiny/block1/unit_2/bottleneck_v1/conv3/BatchNorm',
        'tiny/block2/unit_1/bottleneck_v1/shortcut',
        'tiny/block2/unit_1/bottleneck_v1/shortcut/BatchNorm',
        'tiny/block2/unit_1/bottleneck_v1/conv1',
        'tiny/block2/unit_1/bottleneck_v1/conv2',
        'tiny/block2/unit_1/bottleneck_v1/conv3',
        'tiny/block2/unit_1/bottleneck_v1/conv3/BatchNorm',
        'tiny/block2/unit_2/bottleneck_v1/conv1',
        'tiny/block2/unit_2/bottleneck_v1/conv2',
        'tiny/block2/unit_2/bottleneck_v1/conv3',
        'tiny/block2/unit_2/bottleneck_v1/conv3/BatchNorm'
    ]
    self.assertItemsEqual(expected, end_points) 
開發者ID:abhisuri97,項目名稱:auto-alt-text-lambda-api,代碼行數:35,代碼來源:resnet_v1_test.py

示例3: testAtrousValuesBottleneck

# 需要導入模塊: from tensorflow.contrib.slim.python.slim.nets import resnet_v1 [as 別名]
# 或者: from tensorflow.contrib.slim.python.slim.nets.resnet_v1 import bottleneck [as 別名]
def testAtrousValuesBottleneck(self):
    self._atrousValues(resnet_v1.bottleneck) 
開發者ID:abhisuri97,項目名稱:auto-alt-text-lambda-api,代碼行數:4,代碼來源:resnet_v1_test.py

示例4: _decide_blocks

# 需要導入模塊: from tensorflow.contrib.slim.python.slim.nets import resnet_v1 [as 別名]
# 或者: from tensorflow.contrib.slim.python.slim.nets.resnet_v1 import bottleneck [as 別名]
def _decide_blocks(self):
    # choose different blocks for different number of layers
    if self._num_layers == 50:
      if tf.__version__ == '1.1.0':
        self._blocks     = [resnet_utils.Block('block1', resnet_v1.bottleneck,[(256,   64, 1)] * 2 + [(256,   64, 2)]),
                               resnet_utils.Block('block2', resnet_v1.bottleneck,[(512,  128, 1)] * 3 + [(512,  128, 2)]),
                               resnet_utils.Block('block3', resnet_v1.bottleneck,[(1024, 256, 1)] * 5 + [(1024, 256, 1)]),
                               resnet_utils.Block('block4', resnet_v1.bottleneck,[(2048, 512, 1)] * 3)]
      else:
        from tensorflow.contrib.slim.python.slim.nets.resnet_v1 import resnet_v1_block
        self._blocks = [resnet_v1_block('block1', base_depth=64, num_units=3, stride=2),
                       resnet_v1_block('block2', base_depth=128, num_units=4, stride=2),
                       resnet_v1_block('block3', base_depth=256, num_units=6, stride=1),
                       resnet_v1_block('block4', base_depth=512, num_units=3, stride=1)]

    elif self._num_layers == 101:
      self._blocks = [resnet_v1_block('block1', base_depth=64, num_units=3, stride=2),
                      resnet_v1_block('block2', base_depth=128, num_units=4, stride=2),
                      # use stride 1 for the last conv4 layer
                      resnet_v1_block('block3', base_depth=256, num_units=23, stride=1),
                      resnet_v1_block('block4', base_depth=512, num_units=3, stride=1)]

    elif self._num_layers == 152:
      self._blocks = [resnet_v1_block('block1', base_depth=64, num_units=3, stride=2),
                      resnet_v1_block('block2', base_depth=128, num_units=8, stride=2),
                      # use stride 1 for the last conv4 layer
                      resnet_v1_block('block3', base_depth=256, num_units=36, stride=1),
                      resnet_v1_block('block4', base_depth=512, num_units=3, stride=1)]

    else:
      # other numbers are not supported
      raise NotImplementedError 
開發者ID:vt-vl-lab,項目名稱:iCAN,代碼行數:34,代碼來源:resnet_v1.py

示例5: __init__

# 需要導入模塊: from tensorflow.contrib.slim.python.slim.nets import resnet_v1 [as 別名]
# 或者: from tensorflow.contrib.slim.python.slim.nets.resnet_v1 import bottleneck [as 別名]
def __init__(self):
        self.visualize = {}
        self.intermediate = {}
        self.predictions = {}
        self.score_summaries = {}
        self.event_summaries = {}
        self.train_summaries = []
        self.losses = {}

        self.image       = tf.placeholder(tf.float32, shape=[1, None, None, 3], name = 'image')
        self.spatial     = tf.placeholder(tf.float32, shape=[None, 64, 64, 2], name = 'sp')
        self.Hsp_boxes   = tf.placeholder(tf.float32, shape=[None, 5], name = 'Hsp_boxes')
        self.O_boxes     = tf.placeholder(tf.float32, shape=[None, 5], name = 'O_boxes')
        self.gt_class_H  = tf.placeholder(tf.float32, shape=[None, 29], name = 'gt_class_H')
        self.gt_class_HO = tf.placeholder(tf.float32, shape=[None, 29], name = 'gt_class_HO')
        self.gt_class_sp = tf.placeholder(tf.float32, shape=[None, 29], name = 'gt_class_sp')
        self.Mask_HO     = tf.placeholder(tf.float32, shape=[None, 29], name = 'HO_mask')
        self.Mask_H      = tf.placeholder(tf.float32, shape=[None, 29], name = 'H_mask')
        self.Mask_sp     = tf.placeholder(tf.float32, shape=[None, 29], name = 'sp_mask')
        self.H_num       = tf.placeholder(tf.int32)
        self.num_classes = 29
        self.num_fc      = 1024
        self.scope       = 'resnet_v1_50'
        self.stride      = [16, ]
        self.lr          = tf.placeholder(tf.float32)
        if tf.__version__ == '1.1.0':
            self.blocks     = [resnet_utils.Block('block1', resnet_v1.bottleneck,[(256,   64, 1)] * 2 + [(256,   64, 2)]),
                               resnet_utils.Block('block2', resnet_v1.bottleneck,[(512,  128, 1)] * 3 + [(512,  128, 2)]),
                               resnet_utils.Block('block3', resnet_v1.bottleneck,[(1024, 256, 1)] * 5 + [(1024, 256, 1)]),
                               resnet_utils.Block('block4', resnet_v1.bottleneck,[(2048, 512, 1)] * 3),
                               resnet_utils.Block('block5', resnet_v1.bottleneck,[(2048, 512, 1)] * 3)]
        else:
            from tensorflow.contrib.slim.python.slim.nets.resnet_v1 import resnet_v1_block
            self.blocks = [resnet_v1_block('block1', base_depth=64,  num_units=3, stride=2),
                           resnet_v1_block('block2', base_depth=128, num_units=4, stride=2),
                           resnet_v1_block('block3', base_depth=256, num_units=6, stride=1),
                           resnet_v1_block('block4', base_depth=512, num_units=3, stride=1),
                           resnet_v1_block('block5', base_depth=512, num_units=3, stride=1)] 
開發者ID:vt-vl-lab,項目名稱:iCAN,代碼行數:40,代碼來源:iCAN_ResNet50_VCOCO.py

示例6: bottleneck

# 需要導入模塊: from tensorflow.contrib.slim.python.slim.nets import resnet_v1 [as 別名]
# 或者: from tensorflow.contrib.slim.python.slim.nets.resnet_v1 import bottleneck [as 別名]
def bottleneck(self, bottom, is_training, name, reuse=False):
        with tf.variable_scope(name) as scope:

            if reuse:
                scope.reuse_variables()

            head_bottleneck = slim.conv2d(bottom, 1024, [1, 1], scope=name)

        return head_bottleneck 
開發者ID:vt-vl-lab,項目名稱:iCAN,代碼行數:11,代碼來源:iCAN_ResNet50_VCOCO.py

示例7: build_network

# 需要導入模塊: from tensorflow.contrib.slim.python.slim.nets import resnet_v1 [as 別名]
# 或者: from tensorflow.contrib.slim.python.slim.nets.resnet_v1 import bottleneck [as 別名]
def build_network(self, is_training):
        initializer = tf.random_normal_initializer(mean=0.0, stddev=0.01)

        # ResNet Backbone
        head       = self.image_to_head(is_training)
        sp         = self.sp_to_head()
        pool5_H    = self.crop_pool_layer(head, self.Hsp_boxes, 'Crop_H')
        pool5_O    = self.crop_pool_layer(head, self.O_boxes,   'Crop_O')

        fc7_H, fc7_O = self.res5(pool5_H, pool5_O, sp, is_training, 'res5')

        # Phi 
        head_phi = slim.conv2d(head, 512, [1, 1], scope='head_phi')

        # g 
        head_g   = slim.conv2d(head, 512, [1, 1], scope='head_g')

        Att_H      = self.attention_pool_layer_H(head_phi, fc7_H[:self.H_num,:], is_training, 'Att_H')
        Att_H      = self.attention_norm_H(Att_H, 'Norm_Att_H')

        att_head_H = tf.multiply(head_g, Att_H)

        Att_O      = self.attention_pool_layer_O(head_phi, fc7_O, is_training, 'Att_O')
        Att_O      = self.attention_norm_O(Att_O, 'Norm_Att_O')
        att_head_O = tf.multiply(head_g, Att_O)

        pool5_SH     = self.bottleneck(att_head_H, is_training, 'bottleneck', False)
        pool5_SO     = self.bottleneck(att_head_O, is_training, 'bottleneck', True)


        fc7_SH, fc7_SO, fc7_SHsp = self.head_to_tail(fc7_H, fc7_O, pool5_SH, pool5_SO, sp, is_training, 'fc_HO')

        cls_prob_H, cls_prob_O, cls_prob_sp = self.region_classification(fc7_SH, fc7_SO, fc7_SHsp, is_training, initializer, 'classification')

        self.score_summaries.update(self.predictions)

        self.visualize["attention_map_H"] = (Att_H - tf.reduce_min(Att_H[0,:,:,:])) / tf.reduce_max((Att_H[0,:,:,:] - tf.reduce_min(Att_H[0,:,:,:])))
        self.visualize["attention_map_O"] = (Att_O - tf.reduce_min(Att_O[0,:,:,:])) / tf.reduce_max((Att_O[0,:,:,:] - tf.reduce_min(Att_O[0,:,:,:])))
        return cls_prob_H, cls_prob_O, cls_prob_sp 
開發者ID:vt-vl-lab,項目名稱:iCAN,代碼行數:41,代碼來源:iCAN_ResNet50_VCOCO.py

示例8: __init__

# 需要導入模塊: from tensorflow.contrib.slim.python.slim.nets import resnet_v1 [as 別名]
# 或者: from tensorflow.contrib.slim.python.slim.nets.resnet_v1 import bottleneck [as 別名]
def __init__(self):
        self.visualize = {}
        self.intermediate = {}
        self.predictions = {}
        self.score_summaries = {}
        self.event_summaries = {}
        self.train_summaries = []
        self.losses = {}

        self.image       = tf.placeholder(tf.float32, shape=[1, None, None, 3], name = 'image')
        self.spatial     = tf.placeholder(tf.float32, shape=[None, 64, 64, 2], name = 'sp')
        self.H_boxes     = tf.placeholder(tf.float32, shape=[None, 5], name = 'H_boxes')
        self.O_boxes     = tf.placeholder(tf.float32, shape=[None, 5], name = 'O_boxes')
        self.gt_class_H  = tf.placeholder(tf.float32, shape=[None, 29], name = 'gt_class_H')
        self.gt_class_HO = tf.placeholder(tf.float32, shape=[None, 29], name = 'gt_class_HO')
        self.Mask_HO     = tf.placeholder(tf.float32, shape=[None, 29], name = 'HO_mask')
        self.Mask_H      = tf.placeholder(tf.float32, shape=[None, 29], name = 'H_mask')
        self.H_num       = tf.placeholder(tf.int32)
        self.num_classes = 29
        self.num_fc      = 1024
        self.scope       = 'resnet_v1_50'
        self.stride      = [16, ]
        self.lr          = tf.placeholder(tf.float32)
        if tf.__version__ == '1.1.0':
            self.blocks     = [resnet_utils.Block('block1', resnet_v1.bottleneck,[(256,   64, 1)] * 2 + [(256,   64, 2)]),
                               resnet_utils.Block('block2', resnet_v1.bottleneck,[(512,  128, 1)] * 3 + [(512,  128, 2)]),
                               resnet_utils.Block('block3', resnet_v1.bottleneck,[(1024, 256, 1)] * 5 + [(1024, 256, 1)]),
                               resnet_utils.Block('block4', resnet_v1.bottleneck,[(2048, 512, 1)] * 3),
                               resnet_utils.Block('block5', resnet_v1.bottleneck,[(2048, 512, 1)] * 3)]
        else:
            from tensorflow.contrib.slim.python.slim.nets.resnet_v1 import resnet_v1_block
            self.blocks = [resnet_v1_block('block1', base_depth=64,  num_units=3, stride=2),
                           resnet_v1_block('block2', base_depth=128, num_units=4, stride=2),
                           resnet_v1_block('block3', base_depth=256, num_units=6, stride=1),
                           resnet_v1_block('block4', base_depth=512, num_units=3, stride=1),
                           resnet_v1_block('block5', base_depth=512, num_units=3, stride=1)] 
開發者ID:vt-vl-lab,項目名稱:iCAN,代碼行數:38,代碼來源:iCAN_ResNet50_VCOCO_Early.py

示例9: build_network

# 需要導入模塊: from tensorflow.contrib.slim.python.slim.nets import resnet_v1 [as 別名]
# 或者: from tensorflow.contrib.slim.python.slim.nets.resnet_v1 import bottleneck [as 別名]
def build_network(self, is_training):
        initializer = tf.random_normal_initializer(mean=0.0, stddev=0.01)

        # ResNet Backbone
        head    = self.image_to_head(is_training)
        sp      = self.sp_to_head()
        pool5_H = self.crop_pool_layer(head, self.H_boxes, 'Crop_H')
        pool5_O = self.crop_pool_layer(head, self.O_boxes, 'Crop_O')
        
        fc7_H, fc7_O = self.res5(pool5_H, pool5_O, sp, is_training, 'res5')

        # Phi 
        head_phi = slim.conv2d(head, 512, [1, 1], scope='head_phi')

        # g 
        head_g   = slim.conv2d(head, 512, [1, 1], scope='head_g')

        Att_H      = self.attention_pool_layer_H(head_phi, fc7_H, is_training, 'Att_H')
        Att_H      = self.attention_norm_H(Att_H, 'Norm_Att_H') 
        
        att_head_H = tf.multiply(head_g, Att_H)

        Att_O      = self.attention_pool_layer_O(head_phi, fc7_O, is_training, 'Att_O')
        Att_O      = self.attention_norm_O(Att_O, 'Norm_Att_O')
        att_head_O = tf.multiply(head_g, Att_O)

        pool5_SH     = self.bottleneck(att_head_H, is_training, 'bottleneck', False)
        pool5_SO     = self.bottleneck(att_head_O, is_training, 'bottleneck', True)     
        
        fc7_HS, fc7_HOSsp       = self.head_to_tail(fc7_H, fc7_O, pool5_SH, pool5_SO, sp, is_training, 'fc_HO')
        cls_prob_H, cls_prob_HO = self.region_classification(fc7_HS, fc7_HOSsp, is_training, initializer, 'classification')

        self.score_summaries.update(self.predictions)
        self.visualize["attention_map_H"] = (Att_H - tf.reduce_min(Att_H[0,:,:,:])) / tf.reduce_max((Att_H[0,:,:,:] - tf.reduce_min(Att_H[0,:,:,:])))
        self.visualize["attention_map_O"] = (Att_O - tf.reduce_min(Att_O[0,:,:,:])) / tf.reduce_max((Att_O[0,:,:,:] - tf.reduce_min(Att_O[0,:,:,:])))

        return cls_prob_H, cls_prob_HO 
開發者ID:vt-vl-lab,項目名稱:iCAN,代碼行數:39,代碼來源:iCAN_ResNet50_VCOCO_Early.py

示例10: __init__

# 需要導入模塊: from tensorflow.contrib.slim.python.slim.nets import resnet_v1 [as 別名]
# 或者: from tensorflow.contrib.slim.python.slim.nets.resnet_v1 import bottleneck [as 別名]
def __init__(self):
        self.visualize = {}
        self.intermediate = {}
        self.predictions = {}
        self.score_summaries = {}
        self.event_summaries = {}
        self.train_summaries = []
        self.losses = {}

        self.image       = tf.placeholder(tf.float32, shape=[1, None, None, 3], name = 'image')
        self.spatial     = tf.placeholder(tf.float32, shape=[None, 64, 64, 2], name = 'sp')
        self.H_boxes     = tf.placeholder(tf.float32, shape=[None, 5], name = 'H_boxes')
        self.O_boxes     = tf.placeholder(tf.float32, shape=[None, 5], name = 'O_boxes')
        self.gt_class_HO = tf.placeholder(tf.float32, shape=[None, 600], name = 'gt_class_HO')
        self.H_num       = tf.placeholder(tf.int32)
        self.num_classes = 600
        self.num_fc      = 1024
        self.scope       = 'resnet_v1_50'
        self.stride      = [16, ]
        self.lr          = tf.placeholder(tf.float32)
        if tf.__version__ == '1.1.0':
            self.blocks     = [resnet_utils.Block('block1', resnet_v1.bottleneck,[(256,   64, 1)] * 2 + [(256,   64, 2)]),
                               resnet_utils.Block('block2', resnet_v1.bottleneck,[(512,  128, 1)] * 3 + [(512,  128, 2)]),
                               resnet_utils.Block('block3', resnet_v1.bottleneck,[(1024, 256, 1)] * 5 + [(1024, 256, 1)]),
                               resnet_utils.Block('block4', resnet_v1.bottleneck,[(2048, 512, 1)] * 3),
                               resnet_utils.Block('block5', resnet_v1.bottleneck,[(2048, 512, 1)] * 3)]
        else:
            from tensorflow.contrib.slim.python.slim.nets.resnet_v1 import resnet_v1_block
            self.blocks = [resnet_v1_block('block1', base_depth=64,  num_units=3, stride=2),
                           resnet_v1_block('block2', base_depth=128, num_units=4, stride=2),
                           resnet_v1_block('block3', base_depth=256, num_units=6, stride=1),
                           resnet_v1_block('block4', base_depth=512, num_units=3, stride=1),
                           resnet_v1_block('block5', base_depth=512, num_units=3, stride=1)] 
開發者ID:vt-vl-lab,項目名稱:iCAN,代碼行數:35,代碼來源:iCAN_ResNet50_HICO.py

示例11: build_network

# 需要導入模塊: from tensorflow.contrib.slim.python.slim.nets import resnet_v1 [as 別名]
# 或者: from tensorflow.contrib.slim.python.slim.nets.resnet_v1 import bottleneck [as 別名]
def build_network(self, is_training):
        initializer = tf.random_normal_initializer(mean=0.0, stddev=0.01)

        # ResNet Backbone
        head       = self.image_to_head(is_training)
        sp         = self.sp_to_head()
        pool5_H    = self.crop_pool_layer(head, self.H_boxes, 'Crop_H')
        pool5_O    = self.crop_pool_layer(head, self.O_boxes[:self.H_num,:], 'Crop_O')

        fc7_H, fc7_O = self.res5(pool5_H, pool5_O, sp, is_training, 'res5')

        # Phi 
        head_phi = slim.conv2d(head, 512, [1, 1], scope='head_phi')

        # g 
        head_g   = slim.conv2d(head, 512, [1, 1], scope='head_g')

        Att_H      = self.attention_pool_layer_H(head_phi, fc7_H, is_training, 'Att_H')
        Att_H      = self.attention_norm_H(Att_H, 'Norm_Att_H')
        att_head_H = tf.multiply(head_g, Att_H)

        Att_O      = self.attention_pool_layer_O(head_phi, fc7_O, is_training, 'Att_O')
        Att_O      = self.attention_norm_O(Att_O, 'Norm_Att_O')
        att_head_O = tf.multiply(head_g, Att_O)

        pool5_SH     = self.bottleneck(att_head_H, is_training, 'bottleneck', False)
        pool5_SO     = self.bottleneck(att_head_O, is_training, 'bottleneck', True)


        fc7_SH, fc7_SO, fc7_SHsp = self.head_to_tail(fc7_H, fc7_O, pool5_SH, pool5_SO, sp, is_training, 'fc_HO')

        cls_prob_H, cls_prob_O, cls_prob_sp = self.region_classification(fc7_SH, fc7_SO, fc7_SHsp, is_training, initializer, 'classification')

        self.score_summaries.update(self.predictions)
        self.visualize["attention_map_H"] = (Att_H - tf.reduce_min(Att_H[0,:,:,:])) / tf.reduce_max((Att_H[0,:,:,:] - tf.reduce_min(Att_H[0,:,:,:])))
        self.visualize["attention_map_O"] = (Att_O - tf.reduce_min(Att_O[0,:,:,:])) / tf.reduce_max((Att_O[0,:,:,:] - tf.reduce_min(Att_O[0,:,:,:])))

        return cls_prob_H, cls_prob_O, cls_prob_sp 
開發者ID:vt-vl-lab,項目名稱:iCAN,代碼行數:40,代碼來源:iCAN_ResNet50_HICO.py

示例12: bottleneck

# 需要導入模塊: from tensorflow.contrib.slim.python.slim.nets import resnet_v1 [as 別名]
# 或者: from tensorflow.contrib.slim.python.slim.nets.resnet_v1 import bottleneck [as 別名]
def bottleneck(self, bottom, is_training, name, reuse=False):
        with tf.variable_scope(name) as scope:

            if reuse:
                scope.reuse_variables()

            head_bottleneck = slim.conv2d(bottom, 1024, [1, 1], scope=name) # 1x1, 1024, fc

        return head_bottleneck 
開發者ID:DirtyHarryLYL,項目名稱:Transferable-Interactiveness-Network,代碼行數:11,代碼來源:TIN_HICO.py

示例13: build_network

# 需要導入模塊: from tensorflow.contrib.slim.python.slim.nets import resnet_v1 [as 別名]
# 或者: from tensorflow.contrib.slim.python.slim.nets.resnet_v1 import bottleneck [as 別名]
def build_network(self, is_training):
        initializer = tf.random_normal_initializer(mean=0.0, stddev=0.01)

        # ResNet Backbone
        head       = self.image_to_head(is_training) # (1, ?, ?, 1024)
        sp         = self.sp_to_head()  # (num_pos_neg,5408)
        pool5_H    = self.crop_pool_layer(head, self.H_boxes, 'Crop_H') # (?, 7, 7, 1024)
        pool5_O    = self.crop_pool_layer(head, self.O_boxes[:self.H_num,:], 'Crop_O') # (?, 7, 7, 1024)

        fc7_H, fc7_O = self.res5(pool5_H, pool5_O, sp, is_training, 'res5')

        # whole image feature
        head_phi = slim.conv2d(head, 512, [1, 1], scope='head_phi')

        # whole image feature
        head_g   = slim.conv2d(head, 512, [1, 1], scope='head_g')

        Att_H      = self.attention_pool_layer_H(head_phi, fc7_H, is_training, 'Att_H')
        Att_H      = self.attention_norm_H(Att_H, 'Norm_Att_H') # softmax
        att_head_H = tf.multiply(head_g, Att_H)

        Att_O      = self.attention_pool_layer_O(head_phi, fc7_O, is_training, 'Att_O')
        Att_O      = self.attention_norm_O(Att_O, 'Norm_Att_O') # softmax
        att_head_O = tf.multiply(head_g, Att_O)

        pool5_SH     = self.bottleneck(att_head_H, is_training, 'bottleneck', False)
        pool5_SO     = self.bottleneck(att_head_O, is_training, 'bottleneck', True)

        fc9_SH, fc9_SO, fc7_SHsp, fc7_SH, fc7_SO = self.head_to_tail(fc7_H, fc7_O, pool5_SH, pool5_SO, sp, is_training, 'fc_HO')
        fc9_binary = self.binary_discriminator(fc7_H, fc7_O, fc7_SH, fc7_SO, sp, is_training, 'fc_binary')

        cls_prob_H, cls_prob_O, cls_prob_sp = self.region_classification(fc9_SH, fc9_SO, fc7_SHsp, is_training, initializer, 'classification')

        # add a Discriminator here to make binary classification
        cls_prob_binary = self.binary_classification(fc9_binary, is_training, initializer, 'binary_classification')

        self.score_summaries.update(self.predictions)
        self.visualize["attention_map_H"] = (Att_H - tf.reduce_min(Att_H[0,:,:,:])) / tf.reduce_max((Att_H[0,:,:,:] - tf.reduce_min(Att_H[0,:,:,:])))
        self.visualize["attention_map_O"] = (Att_O - tf.reduce_min(Att_O[0,:,:,:])) / tf.reduce_max((Att_O[0,:,:,:] - tf.reduce_min(Att_O[0,:,:,:])))

        return cls_prob_H, cls_prob_O, cls_prob_sp, cls_prob_binary 
開發者ID:DirtyHarryLYL,項目名稱:Transferable-Interactiveness-Network,代碼行數:43,代碼來源:TIN_HICO.py

示例14: build_network

# 需要導入模塊: from tensorflow.contrib.slim.python.slim.nets import resnet_v1 [as 別名]
# 或者: from tensorflow.contrib.slim.python.slim.nets.resnet_v1 import bottleneck [as 別名]
def build_network(self, is_training):
        initializer = tf.random_normal_initializer(mean=0.0, stddev=0.01)

        # ResNet Backbone
        head       = self.image_to_head(is_training)
        sp         = self.sp_to_head()
        pool5_H    = self.crop_pool_layer(head, self.Hsp_boxes, 'Crop_H')
        pool5_O    = self.crop_pool_layer(head, self.O_boxes,   'Crop_O')

        fc7_H, fc7_O = self.res5(pool5_H, pool5_O, sp, is_training, 'res5')

        head_phi = slim.conv2d(head, 512, [1, 1], scope='head_phi')

        head_g   = slim.conv2d(head, 512, [1, 1], scope='head_g')

        Att_H      = self.attention_pool_layer_H(head_phi, fc7_H[:self.H_num,:], is_training, 'Att_H')
        Att_H      = self.attention_norm_H(Att_H, 'Norm_Att_H')
        att_head_H = tf.multiply(head_g, Att_H)

        Att_O      = self.attention_pool_layer_O(head_phi, fc7_O, is_training, 'Att_O')
        Att_O      = self.attention_norm_O(Att_O, 'Norm_Att_O')
        att_head_O = tf.multiply(head_g, Att_O)

        pool5_SH     = self.bottleneck(att_head_H, is_training, 'bottleneck', False)
        pool5_SO     = self.bottleneck(att_head_O, is_training, 'bottleneck', True)

        fc9_SH, fc9_SO, fc7_SHsp, fc7_SH, fc7_SO = self.head_to_tail(fc7_H, fc7_O, pool5_SH, pool5_SO, sp, is_training, 'fc_HO')
        fc9_binary = self.binary_discriminator(fc7_H, fc7_O, fc7_SH, fc7_SO, sp, is_training, 'fc_binary')

        cls_prob_H, cls_prob_O, cls_prob_sp = self.region_classification(fc9_SH, fc9_SO, fc7_SHsp, is_training, initializer, 'classification')
        cls_prob_binary = self.binary_classification(fc9_binary, is_training, initializer, 'binary_classification')

        self.score_summaries.update(self.predictions)

        self.visualize["attention_map_H"] = (Att_H - tf.reduce_min(Att_H[0,:,:,:])) / tf.reduce_max((Att_H[0,:,:,:] - tf.reduce_min(Att_H[0,:,:,:])))
        self.visualize["attention_map_O"] = (Att_O - tf.reduce_min(Att_O[0,:,:,:])) / tf.reduce_max((Att_O[0,:,:,:] - tf.reduce_min(Att_O[0,:,:,:])))
        return cls_prob_H, cls_prob_O, cls_prob_sp, cls_prob_binary 
開發者ID:DirtyHarryLYL,項目名稱:Transferable-Interactiveness-Network,代碼行數:39,代碼來源:TIN_VCOCO.py

示例15: _atrousValues

# 需要導入模塊: from tensorflow.contrib.slim.python.slim.nets import resnet_v1 [as 別名]
# 或者: from tensorflow.contrib.slim.python.slim.nets.resnet_v1 import bottleneck [as 別名]
def _atrousValues(self, bottleneck):
    """Verify the values of dense feature extraction by atrous convolution.

    Make sure that dense feature extraction by stack_blocks_dense() followed by
    subsampling gives identical results to feature extraction at the nominal
    network output stride using the simple self._stack_blocks_nondense() above.

    Args:
      bottleneck: The bottleneck function.
    """
    blocks = [
        resnet_utils.Block('block1', bottleneck, [(4, 1, 1), (4, 1, 2)]),
        resnet_utils.Block('block2', bottleneck, [(8, 2, 1), (8, 2, 2)]),
        resnet_utils.Block('block3', bottleneck, [(16, 4, 1), (16, 4, 2)]),
        resnet_utils.Block('block4', bottleneck, [(32, 8, 1), (32, 8, 1)])
    ]
    nominal_stride = 8

    # Test both odd and even input dimensions.
    height = 30
    width = 31
    with arg_scope(resnet_utils.resnet_arg_scope(is_training=False)):
      for output_stride in [1, 2, 4, 8, None]:
        with ops.Graph().as_default():
          with self.test_session() as sess:
            random_seed.set_random_seed(0)
            inputs = create_test_input(1, height, width, 3)
            # Dense feature extraction followed by subsampling.
            output = resnet_utils.stack_blocks_dense(inputs, blocks,
                                                     output_stride)
            if output_stride is None:
              factor = 1
            else:
              factor = nominal_stride // output_stride

            output = resnet_utils.subsample(output, factor)
            # Make the two networks use the same weights.
            variable_scope.get_variable_scope().reuse_variables()
            # Feature extraction at the nominal network rate.
            expected = self._stack_blocks_nondense(inputs, blocks)
            sess.run(variables.global_variables_initializer())
            output, expected = sess.run([output, expected])
            self.assertAllClose(output, expected, atol=1e-4, rtol=1e-4) 
開發者ID:abhisuri97,項目名稱:auto-alt-text-lambda-api,代碼行數:45,代碼來源:resnet_v1_test.py


注:本文中的tensorflow.contrib.slim.python.slim.nets.resnet_v1.bottleneck方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。