本文整理匯總了Python中tensorflow.contrib.slim.python.slim.nets.resnet_utils.resnet_arg_scope方法的典型用法代碼示例。如果您正苦於以下問題:Python resnet_utils.resnet_arg_scope方法的具體用法?Python resnet_utils.resnet_arg_scope怎麽用?Python resnet_utils.resnet_arg_scope使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.contrib.slim.python.slim.nets.resnet_utils
的用法示例。
在下文中一共展示了resnet_utils.resnet_arg_scope方法的10個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: testClassificationShapes
# 需要導入模塊: from tensorflow.contrib.slim.python.slim.nets import resnet_utils [as 別名]
# 或者: from tensorflow.contrib.slim.python.slim.nets.resnet_utils import resnet_arg_scope [as 別名]
def testClassificationShapes(self):
global_pool = True
num_classes = 10
inputs = create_test_input(2, 224, 224, 3)
with arg_scope(resnet_utils.resnet_arg_scope()):
_, end_points = self._resnet_small(
inputs, num_classes, global_pool, scope='resnet')
endpoint_to_shape = {
'resnet/block1': [2, 28, 28, 4],
'resnet/block2': [2, 14, 14, 8],
'resnet/block3': [2, 7, 7, 16],
'resnet/block4': [2, 7, 7, 32]
}
for endpoint in endpoint_to_shape:
shape = endpoint_to_shape[endpoint]
self.assertListEqual(end_points[endpoint].get_shape().as_list(), shape)
示例2: testFullyConvolutionalEndpointShapes
# 需要導入模塊: from tensorflow.contrib.slim.python.slim.nets import resnet_utils [as 別名]
# 或者: from tensorflow.contrib.slim.python.slim.nets.resnet_utils import resnet_arg_scope [as 別名]
def testFullyConvolutionalEndpointShapes(self):
global_pool = False
num_classes = 10
inputs = create_test_input(2, 321, 321, 3)
with arg_scope(resnet_utils.resnet_arg_scope()):
_, end_points = self._resnet_small(
inputs, num_classes, global_pool, scope='resnet')
endpoint_to_shape = {
'resnet/block1': [2, 41, 41, 4],
'resnet/block2': [2, 21, 21, 8],
'resnet/block3': [2, 11, 11, 16],
'resnet/block4': [2, 11, 11, 32]
}
for endpoint in endpoint_to_shape:
shape = endpoint_to_shape[endpoint]
self.assertListEqual(end_points[endpoint].get_shape().as_list(), shape)
示例3: testAtrousFullyConvolutionalEndpointShapes
# 需要導入模塊: from tensorflow.contrib.slim.python.slim.nets import resnet_utils [as 別名]
# 或者: from tensorflow.contrib.slim.python.slim.nets.resnet_utils import resnet_arg_scope [as 別名]
def testAtrousFullyConvolutionalEndpointShapes(self):
global_pool = False
num_classes = 10
output_stride = 8
inputs = create_test_input(2, 321, 321, 3)
with arg_scope(resnet_utils.resnet_arg_scope()):
_, end_points = self._resnet_small(
inputs,
num_classes,
global_pool,
output_stride=output_stride,
scope='resnet')
endpoint_to_shape = {
'resnet/block1': [2, 41, 41, 4],
'resnet/block2': [2, 41, 41, 8],
'resnet/block3': [2, 41, 41, 16],
'resnet/block4': [2, 41, 41, 32]
}
for endpoint in endpoint_to_shape:
shape = endpoint_to_shape[endpoint]
self.assertListEqual(end_points[endpoint].get_shape().as_list(), shape)
示例4: testAtrousFullyConvolutionalValues
# 需要導入模塊: from tensorflow.contrib.slim.python.slim.nets import resnet_utils [as 別名]
# 或者: from tensorflow.contrib.slim.python.slim.nets.resnet_utils import resnet_arg_scope [as 別名]
def testAtrousFullyConvolutionalValues(self):
"""Verify dense feature extraction with atrous convolution."""
nominal_stride = 32
for output_stride in [4, 8, 16, 32, None]:
with arg_scope(resnet_utils.resnet_arg_scope(is_training=False)):
with ops.Graph().as_default():
with self.test_session() as sess:
random_seed.set_random_seed(0)
inputs = create_test_input(2, 81, 81, 3)
# Dense feature extraction followed by subsampling.
output, _ = self._resnet_small(
inputs, None, global_pool=False, output_stride=output_stride)
if output_stride is None:
factor = 1
else:
factor = nominal_stride // output_stride
output = resnet_utils.subsample(output, factor)
# Make the two networks use the same weights.
variable_scope.get_variable_scope().reuse_variables()
# Feature extraction at the nominal network rate.
expected, _ = self._resnet_small(inputs, None, global_pool=False)
sess.run(variables.global_variables_initializer())
self.assertAllClose(
output.eval(), expected.eval(), atol=1e-4, rtol=1e-4)
示例5: testUnknownBatchSize
# 需要導入模塊: from tensorflow.contrib.slim.python.slim.nets import resnet_utils [as 別名]
# 或者: from tensorflow.contrib.slim.python.slim.nets.resnet_utils import resnet_arg_scope [as 別名]
def testUnknownBatchSize(self):
batch = 2
height, width = 65, 65
global_pool = True
num_classes = 10
inputs = create_test_input(None, height, width, 3)
with arg_scope(resnet_utils.resnet_arg_scope()):
logits, _ = self._resnet_small(
inputs, num_classes, global_pool, scope='resnet')
self.assertTrue(logits.op.name.startswith('resnet/logits'))
self.assertListEqual(logits.get_shape().as_list(),
[None, 1, 1, num_classes])
images = create_test_input(batch, height, width, 3)
with self.test_session() as sess:
sess.run(variables.global_variables_initializer())
output = sess.run(logits, {inputs: images.eval()})
self.assertEqual(output.shape, (batch, 1, 1, num_classes))
示例6: testRootlessFullyConvolutionalEndpointShapes
# 需要導入模塊: from tensorflow.contrib.slim.python.slim.nets import resnet_utils [as 別名]
# 或者: from tensorflow.contrib.slim.python.slim.nets.resnet_utils import resnet_arg_scope [as 別名]
def testRootlessFullyConvolutionalEndpointShapes(self):
global_pool = False
num_classes = 10
inputs = create_test_input(2, 128, 128, 3)
with arg_scope(resnet_utils.resnet_arg_scope()):
_, end_points = self._resnet_small(
inputs,
num_classes,
global_pool,
include_root_block=False,
scope='resnet')
endpoint_to_shape = {
'resnet/block1': [2, 64, 64, 4],
'resnet/block2': [2, 32, 32, 8],
'resnet/block3': [2, 16, 16, 16],
'resnet/block4': [2, 16, 16, 32]
}
for endpoint in endpoint_to_shape:
shape = endpoint_to_shape[endpoint]
self.assertListEqual(end_points[endpoint].get_shape().as_list(), shape)
示例7: testEndPointsV2
# 需要導入模塊: from tensorflow.contrib.slim.python.slim.nets import resnet_utils [as 別名]
# 或者: from tensorflow.contrib.slim.python.slim.nets.resnet_utils import resnet_arg_scope [as 別名]
def testEndPointsV2(self):
"""Test the end points of a tiny v2 bottleneck network."""
bottleneck = resnet_v2.bottleneck
blocks = [
resnet_utils.Block('block1', bottleneck, [(4, 1, 1), (4, 1, 2)]),
resnet_utils.Block('block2', bottleneck, [(8, 2, 1), (8, 2, 1)])
]
inputs = create_test_input(2, 32, 16, 3)
with arg_scope(resnet_utils.resnet_arg_scope()):
_, end_points = self._resnet_plain(inputs, blocks, scope='tiny')
expected = [
'tiny/block1/unit_1/bottleneck_v2/shortcut',
'tiny/block1/unit_1/bottleneck_v2/conv1',
'tiny/block1/unit_1/bottleneck_v2/conv2',
'tiny/block1/unit_1/bottleneck_v2/conv3',
'tiny/block1/unit_2/bottleneck_v2/conv1',
'tiny/block1/unit_2/bottleneck_v2/conv2',
'tiny/block1/unit_2/bottleneck_v2/conv3',
'tiny/block2/unit_1/bottleneck_v2/shortcut',
'tiny/block2/unit_1/bottleneck_v2/conv1',
'tiny/block2/unit_1/bottleneck_v2/conv2',
'tiny/block2/unit_1/bottleneck_v2/conv3',
'tiny/block2/unit_2/bottleneck_v2/conv1',
'tiny/block2/unit_2/bottleneck_v2/conv2',
'tiny/block2/unit_2/bottleneck_v2/conv3'
]
self.assertItemsEqual(expected, end_points)
示例8: testClassificationEndPoints
# 需要導入模塊: from tensorflow.contrib.slim.python.slim.nets import resnet_utils [as 別名]
# 或者: from tensorflow.contrib.slim.python.slim.nets.resnet_utils import resnet_arg_scope [as 別名]
def testClassificationEndPoints(self):
global_pool = True
num_classes = 10
inputs = create_test_input(2, 224, 224, 3)
with arg_scope(resnet_utils.resnet_arg_scope()):
logits, end_points = self._resnet_small(
inputs, num_classes, global_pool, scope='resnet')
self.assertTrue(logits.op.name.startswith('resnet/logits'))
self.assertListEqual(logits.get_shape().as_list(), [2, 1, 1, num_classes])
self.assertTrue('predictions' in end_points)
self.assertListEqual(end_points['predictions'].get_shape().as_list(),
[2, 1, 1, num_classes])
示例9: testFullyConvolutionalUnknownHeightWidth
# 需要導入模塊: from tensorflow.contrib.slim.python.slim.nets import resnet_utils [as 別名]
# 或者: from tensorflow.contrib.slim.python.slim.nets.resnet_utils import resnet_arg_scope [as 別名]
def testFullyConvolutionalUnknownHeightWidth(self):
batch = 2
height, width = 65, 65
global_pool = False
inputs = create_test_input(batch, None, None, 3)
with arg_scope(resnet_utils.resnet_arg_scope()):
output, _ = self._resnet_small(inputs, None, global_pool)
self.assertListEqual(output.get_shape().as_list(), [batch, None, None, 32])
images = create_test_input(batch, height, width, 3)
with self.test_session() as sess:
sess.run(variables.global_variables_initializer())
output = sess.run(output, {inputs: images.eval()})
self.assertEqual(output.shape, (batch, 3, 3, 32))
示例10: testAtrousFullyConvolutionalUnknownHeightWidth
# 需要導入模塊: from tensorflow.contrib.slim.python.slim.nets import resnet_utils [as 別名]
# 或者: from tensorflow.contrib.slim.python.slim.nets.resnet_utils import resnet_arg_scope [as 別名]
def testAtrousFullyConvolutionalUnknownHeightWidth(self):
batch = 2
height, width = 65, 65
global_pool = False
output_stride = 8
inputs = create_test_input(batch, None, None, 3)
with arg_scope(resnet_utils.resnet_arg_scope()):
output, _ = self._resnet_small(
inputs, None, global_pool, output_stride=output_stride)
self.assertListEqual(output.get_shape().as_list(), [batch, None, None, 32])
images = create_test_input(batch, height, width, 3)
with self.test_session() as sess:
sess.run(variables.global_variables_initializer())
output = sess.run(output, {inputs: images.eval()})
self.assertEqual(output.shape, (batch, 9, 9, 32))