本文整理匯總了Python中tensorflow.contrib.slim.python.slim.data.tfexample_decoder.Tensor方法的典型用法代碼示例。如果您正苦於以下問題:Python tfexample_decoder.Tensor方法的具體用法?Python tfexample_decoder.Tensor怎麽用?Python tfexample_decoder.Tensor使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.contrib.slim.python.slim.data.tfexample_decoder
的用法示例。
在下文中一共展示了tfexample_decoder.Tensor方法的13個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: testDecodeExampleWithFloatTensor
# 需要導入模塊: from tensorflow.contrib.slim.python.slim.data import tfexample_decoder [as 別名]
# 或者: from tensorflow.contrib.slim.python.slim.data.tfexample_decoder import Tensor [as 別名]
def testDecodeExampleWithFloatTensor(self):
np_array = np.random.rand(2, 3, 1).astype('f')
example = example_pb2.Example(features=feature_pb2.Features(feature={
'array': self._EncodedFloatFeature(np_array),
}))
serialized_example = example.SerializeToString()
with self.test_session():
serialized_example = array_ops.reshape(serialized_example, shape=[])
keys_to_features = {
'array': parsing_ops.FixedLenFeature(np_array.shape, dtypes.float32)
}
items_to_handlers = {'array': tfexample_decoder.Tensor('array'),}
decoder = tfexample_decoder.TFExampleDecoder(keys_to_features,
items_to_handlers)
[tf_array] = decoder.decode(serialized_example, ['array'])
self.assertAllEqual(tf_array.eval(), np_array)
示例2: testDecodeExampleWithInt64Tensor
# 需要導入模塊: from tensorflow.contrib.slim.python.slim.data import tfexample_decoder [as 別名]
# 或者: from tensorflow.contrib.slim.python.slim.data.tfexample_decoder import Tensor [as 別名]
def testDecodeExampleWithInt64Tensor(self):
np_array = np.random.randint(1, 10, size=(2, 3, 1))
example = example_pb2.Example(features=feature_pb2.Features(feature={
'array': self._EncodedInt64Feature(np_array),
}))
serialized_example = example.SerializeToString()
with self.test_session():
serialized_example = array_ops.reshape(serialized_example, shape=[])
keys_to_features = {
'array': parsing_ops.FixedLenFeature(np_array.shape, dtypes.int64)
}
items_to_handlers = {'array': tfexample_decoder.Tensor('array'),}
decoder = tfexample_decoder.TFExampleDecoder(keys_to_features,
items_to_handlers)
[tf_array] = decoder.decode(serialized_example, ['array'])
self.assertAllEqual(tf_array.eval(), np_array)
示例3: testDecodeExampleWithVarLenTensor
# 需要導入模塊: from tensorflow.contrib.slim.python.slim.data import tfexample_decoder [as 別名]
# 或者: from tensorflow.contrib.slim.python.slim.data.tfexample_decoder import Tensor [as 別名]
def testDecodeExampleWithVarLenTensor(self):
np_array = np.array([[[1], [2], [3]], [[4], [5], [6]]])
example = example_pb2.Example(features=feature_pb2.Features(feature={
'labels': self._EncodedInt64Feature(np_array),
}))
serialized_example = example.SerializeToString()
with self.test_session():
serialized_example = array_ops.reshape(serialized_example, shape=[])
keys_to_features = {
'labels': parsing_ops.VarLenFeature(dtype=dtypes.int64),
}
items_to_handlers = {'labels': tfexample_decoder.Tensor('labels'),}
decoder = tfexample_decoder.TFExampleDecoder(keys_to_features,
items_to_handlers)
[tf_labels] = decoder.decode(serialized_example, ['labels'])
labels = tf_labels.eval()
self.assertAllEqual(labels, np_array.flatten())
示例4: testDecodeExampleWithFixLenTensorWithShape
# 需要導入模塊: from tensorflow.contrib.slim.python.slim.data import tfexample_decoder [as 別名]
# 或者: from tensorflow.contrib.slim.python.slim.data.tfexample_decoder import Tensor [as 別名]
def testDecodeExampleWithFixLenTensorWithShape(self):
np_array = np.array([[1, 2, 3], [4, 5, 6]])
example = example_pb2.Example(features=feature_pb2.Features(feature={
'labels': self._EncodedInt64Feature(np_array),
}))
serialized_example = example.SerializeToString()
with self.test_session():
serialized_example = array_ops.reshape(serialized_example, shape=[])
keys_to_features = {
'labels':
parsing_ops.FixedLenFeature(
np_array.shape, dtype=dtypes.int64),
}
items_to_handlers = {
'labels': tfexample_decoder.Tensor(
'labels', shape=np_array.shape),
}
decoder = tfexample_decoder.TFExampleDecoder(keys_to_features,
items_to_handlers)
[tf_labels] = decoder.decode(serialized_example, ['labels'])
labels = tf_labels.eval()
self.assertAllEqual(labels, np_array)
示例5: testDecodeExampleWithStringTensor
# 需要導入模塊: from tensorflow.contrib.slim.python.slim.data import tfexample_decoder [as 別名]
# 或者: from tensorflow.contrib.slim.python.slim.data.tfexample_decoder import Tensor [as 別名]
def testDecodeExampleWithStringTensor(self):
tensor_shape = (2, 3, 1)
np_array = np.array([[['ab'], ['cd'], ['ef']],
[['ghi'], ['jkl'], ['mnop']]])
example = example_pb2.Example(features=feature_pb2.Features(feature={
'labels': self._BytesFeature(np_array),
}))
serialized_example = example.SerializeToString()
with self.test_session():
serialized_example = array_ops.reshape(serialized_example, shape=[])
keys_to_features = {
'labels':
parsing_ops.FixedLenFeature(
tensor_shape,
dtypes.string,
default_value=constant_op.constant(
'', shape=tensor_shape, dtype=dtypes.string))
}
items_to_handlers = {'labels': tfexample_decoder.Tensor('labels'),}
decoder = tfexample_decoder.TFExampleDecoder(keys_to_features,
items_to_handlers)
[tf_labels] = decoder.decode(serialized_example, ['labels'])
labels = tf_labels.eval()
labels = labels.astype(np_array.dtype)
self.assertTrue(np.array_equal(np_array, labels))
示例6: testDecodeExampleShapeKeyTensor
# 需要導入模塊: from tensorflow.contrib.slim.python.slim.data import tfexample_decoder [as 別名]
# 或者: from tensorflow.contrib.slim.python.slim.data.tfexample_decoder import Tensor [as 別名]
def testDecodeExampleShapeKeyTensor(self):
np_image = np.random.rand(2, 3, 1).astype('f')
np_labels = np.array([[[1], [2], [3]], [[4], [5], [6]]])
example = example_pb2.Example(features=feature_pb2.Features(feature={
'image': self._EncodedFloatFeature(np_image),
'image/shape': self._EncodedInt64Feature(np.array(np_image.shape)),
'labels': self._EncodedInt64Feature(np_labels),
'labels/shape': self._EncodedInt64Feature(np.array(np_labels.shape)),
}))
serialized_example = example.SerializeToString()
with self.test_session():
serialized_example = array_ops.reshape(serialized_example, shape=[])
keys_to_features = {
'image': parsing_ops.VarLenFeature(dtype=dtypes.float32),
'image/shape': parsing_ops.VarLenFeature(dtype=dtypes.int64),
'labels': parsing_ops.VarLenFeature(dtype=dtypes.int64),
'labels/shape': parsing_ops.VarLenFeature(dtype=dtypes.int64),
}
items_to_handlers = {
'image':
tfexample_decoder.Tensor(
'image', shape_keys='image/shape'),
'labels':
tfexample_decoder.Tensor(
'labels', shape_keys='labels/shape'),
}
decoder = tfexample_decoder.TFExampleDecoder(keys_to_features,
items_to_handlers)
[tf_image, tf_labels] = decoder.decode(serialized_example,
['image', 'labels'])
self.assertAllEqual(tf_image.eval(), np_image)
self.assertAllEqual(tf_labels.eval(), np_labels)
示例7: testDecodeExampleMultiShapeKeyTensor
# 需要導入模塊: from tensorflow.contrib.slim.python.slim.data import tfexample_decoder [as 別名]
# 或者: from tensorflow.contrib.slim.python.slim.data.tfexample_decoder import Tensor [as 別名]
def testDecodeExampleMultiShapeKeyTensor(self):
np_image = np.random.rand(2, 3, 1).astype('f')
np_labels = np.array([[[1], [2], [3]], [[4], [5], [6]]])
height, width, depth = np_labels.shape
example = example_pb2.Example(features=feature_pb2.Features(feature={
'image': self._EncodedFloatFeature(np_image),
'image/shape': self._EncodedInt64Feature(np.array(np_image.shape)),
'labels': self._EncodedInt64Feature(np_labels),
'labels/height': self._EncodedInt64Feature(np.array([height])),
'labels/width': self._EncodedInt64Feature(np.array([width])),
'labels/depth': self._EncodedInt64Feature(np.array([depth])),
}))
serialized_example = example.SerializeToString()
with self.test_session():
serialized_example = array_ops.reshape(serialized_example, shape=[])
keys_to_features = {
'image': parsing_ops.VarLenFeature(dtype=dtypes.float32),
'image/shape': parsing_ops.VarLenFeature(dtype=dtypes.int64),
'labels': parsing_ops.VarLenFeature(dtype=dtypes.int64),
'labels/height': parsing_ops.VarLenFeature(dtype=dtypes.int64),
'labels/width': parsing_ops.VarLenFeature(dtype=dtypes.int64),
'labels/depth': parsing_ops.VarLenFeature(dtype=dtypes.int64),
}
items_to_handlers = {
'image':
tfexample_decoder.Tensor(
'image', shape_keys='image/shape'),
'labels':
tfexample_decoder.Tensor(
'labels',
shape_keys=['labels/height', 'labels/width', 'labels/depth']),
}
decoder = tfexample_decoder.TFExampleDecoder(keys_to_features,
items_to_handlers)
[tf_image, tf_labels] = decoder.decode(serialized_example,
['image', 'labels'])
self.assertAllEqual(tf_image.eval(), np_image)
self.assertAllEqual(tf_labels.eval(), np_labels)
示例8: testDecodeExampleWithTensor
# 需要導入模塊: from tensorflow.contrib.slim.python.slim.data import tfexample_decoder [as 別名]
# 或者: from tensorflow.contrib.slim.python.slim.data.tfexample_decoder import Tensor [as 別名]
def testDecodeExampleWithTensor(self):
tensor_shape = (2, 3, 1)
np_array = np.random.rand(2, 3, 1)
example = example_pb2.Example(features=feature_pb2.Features(feature={
'image/depth_map': self._EncodedFloatFeature(np_array),
}))
serialized_example = example.SerializeToString()
with self.test_session():
serialized_example = array_ops.reshape(serialized_example, shape=[])
keys_to_features = {
'image/depth_map':
parsing_ops.FixedLenFeature(
tensor_shape,
dtypes.float32,
default_value=array_ops.zeros(tensor_shape))
}
items_to_handlers = {'depth': tfexample_decoder.Tensor('image/depth_map')}
decoder = tfexample_decoder.TFExampleDecoder(keys_to_features,
items_to_handlers)
[tf_depth] = decoder.decode(serialized_example, ['depth'])
depth = tf_depth.eval()
self.assertAllClose(np_array, depth)
示例9: _create_tfrecord_dataset
# 需要導入模塊: from tensorflow.contrib.slim.python.slim.data import tfexample_decoder [as 別名]
# 或者: from tensorflow.contrib.slim.python.slim.data.tfexample_decoder import Tensor [as 別名]
def _create_tfrecord_dataset(tmpdir):
if not gfile.Exists(tmpdir):
gfile.MakeDirs(tmpdir)
data_sources = test_utils.create_tfrecord_files(tmpdir, num_files=1)
keys_to_features = {
'image/encoded':
parsing_ops.FixedLenFeature(
shape=(), dtype=dtypes.string, default_value=''),
'image/format':
parsing_ops.FixedLenFeature(
shape=(), dtype=dtypes.string, default_value='jpeg'),
'image/class/label':
parsing_ops.FixedLenFeature(
shape=[1],
dtype=dtypes.int64,
default_value=array_ops.zeros(
[1], dtype=dtypes.int64))
}
items_to_handlers = {
'image': tfexample_decoder.Image(),
'label': tfexample_decoder.Tensor('image/class/label'),
}
decoder = tfexample_decoder.TFExampleDecoder(keys_to_features,
items_to_handlers)
return dataset.Dataset(
data_sources=data_sources,
reader=io_ops.TFRecordReader,
decoder=decoder,
num_samples=100,
items_to_descriptions=None)
示例10: _get_split
# 需要導入模塊: from tensorflow.contrib.slim.python.slim.data import tfexample_decoder [as 別名]
# 或者: from tensorflow.contrib.slim.python.slim.data.tfexample_decoder import Tensor [as 別名]
def _get_split(file_pattern, num_samples, num_views, image_size, vox_size):
"""Get dataset.Dataset for the given dataset file pattern and properties."""
# A dictionary from TF-Example keys to tf.FixedLenFeature instance.
keys_to_features = {
'image': tf.FixedLenFeature(
shape=[num_views, image_size, image_size, 3],
dtype=tf.float32, default_value=None),
'mask': tf.FixedLenFeature(
shape=[num_views, image_size, image_size, 1],
dtype=tf.float32, default_value=None),
'vox': tf.FixedLenFeature(
shape=[vox_size, vox_size, vox_size, 1],
dtype=tf.float32, default_value=None),
}
items_to_handler = {
'image': tfexample_decoder.Tensor(
'image', shape=[num_views, image_size, image_size, 3]),
'mask': tfexample_decoder.Tensor(
'mask', shape=[num_views, image_size, image_size, 1]),
'vox': tfexample_decoder.Tensor(
'vox', shape=[vox_size, vox_size, vox_size, 1])
}
decoder = tfexample_decoder.TFExampleDecoder(
keys_to_features, items_to_handler)
return dataset.Dataset(
data_sources=file_pattern,
reader=tf.TFRecordReader,
decoder=decoder,
num_samples=num_samples,
items_to_descriptions=_ITEMS_TO_DESCRIPTIONS)
示例11: items_to_handlers
# 需要導入模塊: from tensorflow.contrib.slim.python.slim.data import tfexample_decoder [as 別名]
# 或者: from tensorflow.contrib.slim.python.slim.data.tfexample_decoder import Tensor [as 別名]
def items_to_handlers(self):
"""Items to handlers
"""
default = {
'image': tfexample_decoder.Image(
shape=self.params['image_shape'],
image_key='image/encoded',
format_key='image/format'),
'label': tfexample_decoder.Tensor(tensor_key='image/class'),
'text': tfexample_decoder.Tensor(tensor_key='image/text'),
'length': tfexample_decoder.Tensor(tensor_key='image/text_length'),
'name': tfexample_decoder.Tensor(tensor_key='image/name')
}
return default
示例12: make_data_provider
# 需要導入模塊: from tensorflow.contrib.slim.python.slim.data import tfexample_decoder [as 別名]
# 或者: from tensorflow.contrib.slim.python.slim.data.tfexample_decoder import Tensor [as 別名]
def make_data_provider(self, **kwargs):
context_keys_to_features = {
self.params["image_field"]: tf.FixedLenFeature(
[], dtype=tf.string),
"image/format": tf.FixedLenFeature(
[], dtype=tf.string, default_value=self.params["image_format"]),
}
sequence_keys_to_features = {
self.params["caption_ids_field"]: tf.FixedLenSequenceFeature(
[], dtype=tf.int64),
self.params["caption_tokens_field"]: tf.FixedLenSequenceFeature(
[], dtype=tf.string)
}
items_to_handlers = {
"image": tfexample_decoder.Image(
image_key=self.params["image_field"],
format_key="image/format",
channels=3),
"target_ids":
tfexample_decoder.Tensor(self.params["caption_ids_field"]),
"target_tokens":
tfexample_decoder.Tensor(self.params["caption_tokens_field"]),
"target_len": tfexample_decoder.ItemHandlerCallback(
keys=[self.params["caption_tokens_field"]],
func=lambda x: tf.size(x[self.params["caption_tokens_field"]]))
}
decoder = TFSEquenceExampleDecoder(
context_keys_to_features, sequence_keys_to_features, items_to_handlers)
dataset = tf.contrib.slim.dataset.Dataset(
data_sources=self.params["files"],
reader=tf.TFRecordReader,
decoder=decoder,
num_samples=None,
items_to_descriptions={})
return tf.contrib.slim.dataset_data_provider.DatasetDataProvider(
dataset=dataset,
shuffle=self.params["shuffle"],
num_epochs=self.params["num_epochs"],
**kwargs)
開發者ID:akanimax,項目名稱:natural-language-summary-generation-from-structured-data,代碼行數:47,代碼來源:input_pipeline.py
示例13: get_split
# 需要導入模塊: from tensorflow.contrib.slim.python.slim.data import tfexample_decoder [as 別名]
# 或者: from tensorflow.contrib.slim.python.slim.data.tfexample_decoder import Tensor [as 別名]
def get_split(split_name, dataset_dir=None):
"""Gets a dataset tuple with instructions for reading cifar100.
Args:
split_name: A train/test split name.
dataset_dir: The base directory of the dataset sources.
Returns:
A `Dataset` namedtuple. Image tensors are integers in [0, 255].
Raises:
ValueError: if `split_name` is not a valid train/test split.
"""
if split_name not in _SPLITS_TO_SIZES:
raise ValueError('split name %s was not recognized.' % split_name)
file_pattern = os.path.join(dataset_dir, _FILE_PATTERN % split_name)
keys_to_features = {
'image/encoded': tf.FixedLenFeature((), tf.string, default_value=''),
'image/format': tf.FixedLenFeature((), tf.string, default_value=''),
'image/class/fine_label': tf.FixedLenFeature(
[1], tf.int64, default_value=tf.zeros([1], dtype=tf.int64)),
'image/class/coarse_label': tf.FixedLenFeature(
[1], tf.int64, default_value=tf.zeros([1], dtype=tf.int64)),
}
items_to_handlers = {
'image': tfexample_decoder.Image(shape=[32, 32, 3]),
'fine_label': tfexample_decoder.Tensor('image/class/fine_label'),
'coarse_label': tfexample_decoder.Tensor('image/class/coarse_label'),
}
decoder = tfexample_decoder.TFExampleDecoder(
keys_to_features, items_to_handlers)
return dataset.Dataset(
data_sources=file_pattern,
reader=tf.TFRecordReader,
decoder=decoder,
num_samples=_SPLITS_TO_SIZES[split_name],
num_classes=_NUM_CLASSES,
items_to_descriptions=_ITEMS_TO_DESCRIPTIONS)