本文整理匯總了Python中tensorflow.contrib.slim.python.slim.data.tfexample_decoder.TFExampleDecoder方法的典型用法代碼示例。如果您正苦於以下問題:Python tfexample_decoder.TFExampleDecoder方法的具體用法?Python tfexample_decoder.TFExampleDecoder怎麽用?Python tfexample_decoder.TFExampleDecoder使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.contrib.slim.python.slim.data.tfexample_decoder
的用法示例。
在下文中一共展示了tfexample_decoder.TFExampleDecoder方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: DecodeExample
# 需要導入模塊: from tensorflow.contrib.slim.python.slim.data import tfexample_decoder [as 別名]
# 或者: from tensorflow.contrib.slim.python.slim.data.tfexample_decoder import TFExampleDecoder [as 別名]
def DecodeExample(self, serialized_example, item_handler, image_format):
"""Decodes the given serialized example with the specified item handler.
Args:
serialized_example: a serialized TF example string.
item_handler: the item handler used to decode the image.
image_format: the image format being decoded.
Returns:
the decoded image found in the serialized Example.
"""
serialized_example = array_ops.reshape(serialized_example, shape=[])
decoder = tfexample_decoder.TFExampleDecoder(
keys_to_features={
'image/encoded':
parsing_ops.FixedLenFeature(
(), dtypes.string, default_value=''),
'image/format':
parsing_ops.FixedLenFeature(
(), dtypes.string, default_value=image_format),
},
items_to_handlers={'image': item_handler})
[tf_image] = decoder.decode(serialized_example, ['image'])
return tf_image
示例2: testDecodeExampleWithFloatTensor
# 需要導入模塊: from tensorflow.contrib.slim.python.slim.data import tfexample_decoder [as 別名]
# 或者: from tensorflow.contrib.slim.python.slim.data.tfexample_decoder import TFExampleDecoder [as 別名]
def testDecodeExampleWithFloatTensor(self):
np_array = np.random.rand(2, 3, 1).astype('f')
example = example_pb2.Example(features=feature_pb2.Features(feature={
'array': self._EncodedFloatFeature(np_array),
}))
serialized_example = example.SerializeToString()
with self.test_session():
serialized_example = array_ops.reshape(serialized_example, shape=[])
keys_to_features = {
'array': parsing_ops.FixedLenFeature(np_array.shape, dtypes.float32)
}
items_to_handlers = {'array': tfexample_decoder.Tensor('array'),}
decoder = tfexample_decoder.TFExampleDecoder(keys_to_features,
items_to_handlers)
[tf_array] = decoder.decode(serialized_example, ['array'])
self.assertAllEqual(tf_array.eval(), np_array)
示例3: testDecodeExampleWithInt64Tensor
# 需要導入模塊: from tensorflow.contrib.slim.python.slim.data import tfexample_decoder [as 別名]
# 或者: from tensorflow.contrib.slim.python.slim.data.tfexample_decoder import TFExampleDecoder [as 別名]
def testDecodeExampleWithInt64Tensor(self):
np_array = np.random.randint(1, 10, size=(2, 3, 1))
example = example_pb2.Example(features=feature_pb2.Features(feature={
'array': self._EncodedInt64Feature(np_array),
}))
serialized_example = example.SerializeToString()
with self.test_session():
serialized_example = array_ops.reshape(serialized_example, shape=[])
keys_to_features = {
'array': parsing_ops.FixedLenFeature(np_array.shape, dtypes.int64)
}
items_to_handlers = {'array': tfexample_decoder.Tensor('array'),}
decoder = tfexample_decoder.TFExampleDecoder(keys_to_features,
items_to_handlers)
[tf_array] = decoder.decode(serialized_example, ['array'])
self.assertAllEqual(tf_array.eval(), np_array)
示例4: testDecodeExampleWithVarLenTensor
# 需要導入模塊: from tensorflow.contrib.slim.python.slim.data import tfexample_decoder [as 別名]
# 或者: from tensorflow.contrib.slim.python.slim.data.tfexample_decoder import TFExampleDecoder [as 別名]
def testDecodeExampleWithVarLenTensor(self):
np_array = np.array([[[1], [2], [3]], [[4], [5], [6]]])
example = example_pb2.Example(features=feature_pb2.Features(feature={
'labels': self._EncodedInt64Feature(np_array),
}))
serialized_example = example.SerializeToString()
with self.test_session():
serialized_example = array_ops.reshape(serialized_example, shape=[])
keys_to_features = {
'labels': parsing_ops.VarLenFeature(dtype=dtypes.int64),
}
items_to_handlers = {'labels': tfexample_decoder.Tensor('labels'),}
decoder = tfexample_decoder.TFExampleDecoder(keys_to_features,
items_to_handlers)
[tf_labels] = decoder.decode(serialized_example, ['labels'])
labels = tf_labels.eval()
self.assertAllEqual(labels, np_array.flatten())
示例5: testDecodeExampleWithVarLenTensorToDense
# 需要導入模塊: from tensorflow.contrib.slim.python.slim.data import tfexample_decoder [as 別名]
# 或者: from tensorflow.contrib.slim.python.slim.data.tfexample_decoder import TFExampleDecoder [as 別名]
def testDecodeExampleWithVarLenTensorToDense(self):
np_array = np.array([[1, 2, 3], [4, 5, 6]])
example = example_pb2.Example(features=feature_pb2.Features(feature={
'labels': self._EncodedInt64Feature(np_array),
}))
serialized_example = example.SerializeToString()
with self.test_session():
serialized_example = array_ops.reshape(serialized_example, shape=[])
keys_to_features = {
'labels': parsing_ops.VarLenFeature(dtype=dtypes.int64),
}
items_to_handlers = {
'labels': tfexample_decoder.Tensor(
'labels', shape=np_array.shape),
}
decoder = tfexample_decoder.TFExampleDecoder(keys_to_features,
items_to_handlers)
[tf_labels] = decoder.decode(serialized_example, ['labels'])
labels = tf_labels.eval()
self.assertAllEqual(labels, np_array)
示例6: testDecodeExampleWithSparseTensor
# 需要導入模塊: from tensorflow.contrib.slim.python.slim.data import tfexample_decoder [as 別名]
# 或者: from tensorflow.contrib.slim.python.slim.data.tfexample_decoder import TFExampleDecoder [as 別名]
def testDecodeExampleWithSparseTensor(self):
np_indices = np.array([[1], [2], [5]])
np_values = np.array([0.1, 0.2, 0.6]).astype('f')
example = example_pb2.Example(features=feature_pb2.Features(feature={
'indices': self._EncodedInt64Feature(np_indices),
'values': self._EncodedFloatFeature(np_values),
}))
serialized_example = example.SerializeToString()
with self.test_session():
serialized_example = array_ops.reshape(serialized_example, shape=[])
keys_to_features = {
'indices': parsing_ops.VarLenFeature(dtype=dtypes.int64),
'values': parsing_ops.VarLenFeature(dtype=dtypes.float32),
}
items_to_handlers = {'labels': tfexample_decoder.SparseTensor(),}
decoder = tfexample_decoder.TFExampleDecoder(keys_to_features,
items_to_handlers)
[tf_labels] = decoder.decode(serialized_example, ['labels'])
labels = tf_labels.eval()
self.assertAllEqual(labels.indices, np_indices)
self.assertAllEqual(labels.values, np_values)
self.assertAllEqual(labels.dense_shape, np_values.shape)
示例7: testDecodeExampleWithStringTensor
# 需要導入模塊: from tensorflow.contrib.slim.python.slim.data import tfexample_decoder [as 別名]
# 或者: from tensorflow.contrib.slim.python.slim.data.tfexample_decoder import TFExampleDecoder [as 別名]
def testDecodeExampleWithStringTensor(self):
tensor_shape = (2, 3, 1)
np_array = np.array([[['ab'], ['cd'], ['ef']],
[['ghi'], ['jkl'], ['mnop']]])
example = example_pb2.Example(features=feature_pb2.Features(feature={
'labels': self._BytesFeature(np_array),
}))
serialized_example = example.SerializeToString()
with self.test_session():
serialized_example = array_ops.reshape(serialized_example, shape=[])
keys_to_features = {
'labels':
parsing_ops.FixedLenFeature(
tensor_shape,
dtypes.string,
default_value=constant_op.constant(
'', shape=tensor_shape, dtype=dtypes.string))
}
items_to_handlers = {'labels': tfexample_decoder.Tensor('labels'),}
decoder = tfexample_decoder.TFExampleDecoder(keys_to_features,
items_to_handlers)
[tf_labels] = decoder.decode(serialized_example, ['labels'])
labels = tf_labels.eval()
labels = labels.astype(np_array.dtype)
self.assertTrue(np.array_equal(np_array, labels))
示例8: testDecodeExampleShapeKeyTensor
# 需要導入模塊: from tensorflow.contrib.slim.python.slim.data import tfexample_decoder [as 別名]
# 或者: from tensorflow.contrib.slim.python.slim.data.tfexample_decoder import TFExampleDecoder [as 別名]
def testDecodeExampleShapeKeyTensor(self):
np_image = np.random.rand(2, 3, 1).astype('f')
np_labels = np.array([[[1], [2], [3]], [[4], [5], [6]]])
example = example_pb2.Example(features=feature_pb2.Features(feature={
'image': self._EncodedFloatFeature(np_image),
'image/shape': self._EncodedInt64Feature(np.array(np_image.shape)),
'labels': self._EncodedInt64Feature(np_labels),
'labels/shape': self._EncodedInt64Feature(np.array(np_labels.shape)),
}))
serialized_example = example.SerializeToString()
with self.test_session():
serialized_example = array_ops.reshape(serialized_example, shape=[])
keys_to_features = {
'image': parsing_ops.VarLenFeature(dtype=dtypes.float32),
'image/shape': parsing_ops.VarLenFeature(dtype=dtypes.int64),
'labels': parsing_ops.VarLenFeature(dtype=dtypes.int64),
'labels/shape': parsing_ops.VarLenFeature(dtype=dtypes.int64),
}
items_to_handlers = {
'image':
tfexample_decoder.Tensor(
'image', shape_keys='image/shape'),
'labels':
tfexample_decoder.Tensor(
'labels', shape_keys='labels/shape'),
}
decoder = tfexample_decoder.TFExampleDecoder(keys_to_features,
items_to_handlers)
[tf_image, tf_labels] = decoder.decode(serialized_example,
['image', 'labels'])
self.assertAllEqual(tf_image.eval(), np_image)
self.assertAllEqual(tf_labels.eval(), np_labels)
示例9: testDecodeExampleMultiShapeKeyTensor
# 需要導入模塊: from tensorflow.contrib.slim.python.slim.data import tfexample_decoder [as 別名]
# 或者: from tensorflow.contrib.slim.python.slim.data.tfexample_decoder import TFExampleDecoder [as 別名]
def testDecodeExampleMultiShapeKeyTensor(self):
np_image = np.random.rand(2, 3, 1).astype('f')
np_labels = np.array([[[1], [2], [3]], [[4], [5], [6]]])
height, width, depth = np_labels.shape
example = example_pb2.Example(features=feature_pb2.Features(feature={
'image': self._EncodedFloatFeature(np_image),
'image/shape': self._EncodedInt64Feature(np.array(np_image.shape)),
'labels': self._EncodedInt64Feature(np_labels),
'labels/height': self._EncodedInt64Feature(np.array([height])),
'labels/width': self._EncodedInt64Feature(np.array([width])),
'labels/depth': self._EncodedInt64Feature(np.array([depth])),
}))
serialized_example = example.SerializeToString()
with self.test_session():
serialized_example = array_ops.reshape(serialized_example, shape=[])
keys_to_features = {
'image': parsing_ops.VarLenFeature(dtype=dtypes.float32),
'image/shape': parsing_ops.VarLenFeature(dtype=dtypes.int64),
'labels': parsing_ops.VarLenFeature(dtype=dtypes.int64),
'labels/height': parsing_ops.VarLenFeature(dtype=dtypes.int64),
'labels/width': parsing_ops.VarLenFeature(dtype=dtypes.int64),
'labels/depth': parsing_ops.VarLenFeature(dtype=dtypes.int64),
}
items_to_handlers = {
'image':
tfexample_decoder.Tensor(
'image', shape_keys='image/shape'),
'labels':
tfexample_decoder.Tensor(
'labels',
shape_keys=['labels/height', 'labels/width', 'labels/depth']),
}
decoder = tfexample_decoder.TFExampleDecoder(keys_to_features,
items_to_handlers)
[tf_image, tf_labels] = decoder.decode(serialized_example,
['image', 'labels'])
self.assertAllEqual(tf_image.eval(), np_image)
self.assertAllEqual(tf_labels.eval(), np_labels)
示例10: testDecodeExampleWithSparseTensorWithKeyShape
# 需要導入模塊: from tensorflow.contrib.slim.python.slim.data import tfexample_decoder [as 別名]
# 或者: from tensorflow.contrib.slim.python.slim.data.tfexample_decoder import TFExampleDecoder [as 別名]
def testDecodeExampleWithSparseTensorWithKeyShape(self):
np_indices = np.array([[1], [2], [5]])
np_values = np.array([0.1, 0.2, 0.6]).astype('f')
np_shape = np.array([6])
example = example_pb2.Example(features=feature_pb2.Features(feature={
'indices': self._EncodedInt64Feature(np_indices),
'values': self._EncodedFloatFeature(np_values),
'shape': self._EncodedInt64Feature(np_shape),
}))
serialized_example = example.SerializeToString()
with self.test_session():
serialized_example = array_ops.reshape(serialized_example, shape=[])
keys_to_features = {
'indices': parsing_ops.VarLenFeature(dtype=dtypes.int64),
'values': parsing_ops.VarLenFeature(dtype=dtypes.float32),
'shape': parsing_ops.VarLenFeature(dtype=dtypes.int64),
}
items_to_handlers = {
'labels': tfexample_decoder.SparseTensor(shape_key='shape'),
}
decoder = tfexample_decoder.TFExampleDecoder(keys_to_features,
items_to_handlers)
[tf_labels] = decoder.decode(serialized_example, ['labels'])
labels = tf_labels.eval()
self.assertAllEqual(labels.indices, np_indices)
self.assertAllEqual(labels.values, np_values)
self.assertAllEqual(labels.dense_shape, np_shape)
示例11: testDecodeExampleWithSparseTensorToDense
# 需要導入模塊: from tensorflow.contrib.slim.python.slim.data import tfexample_decoder [as 別名]
# 或者: from tensorflow.contrib.slim.python.slim.data.tfexample_decoder import TFExampleDecoder [as 別名]
def testDecodeExampleWithSparseTensorToDense(self):
np_indices = np.array([1, 2, 5])
np_values = np.array([0.1, 0.2, 0.6]).astype('f')
np_shape = np.array([6])
np_dense = np.array([0.0, 0.1, 0.2, 0.0, 0.0, 0.6]).astype('f')
example = example_pb2.Example(features=feature_pb2.Features(feature={
'indices': self._EncodedInt64Feature(np_indices),
'values': self._EncodedFloatFeature(np_values),
}))
serialized_example = example.SerializeToString()
with self.test_session():
serialized_example = array_ops.reshape(serialized_example, shape=[])
keys_to_features = {
'indices': parsing_ops.VarLenFeature(dtype=dtypes.int64),
'values': parsing_ops.VarLenFeature(dtype=dtypes.float32),
}
items_to_handlers = {
'labels':
tfexample_decoder.SparseTensor(
shape=np_shape, densify=True),
}
decoder = tfexample_decoder.TFExampleDecoder(keys_to_features,
items_to_handlers)
[tf_labels] = decoder.decode(serialized_example, ['labels'])
labels = tf_labels.eval()
self.assertAllClose(labels, np_dense)
示例12: testDecodeExampleWithTensor
# 需要導入模塊: from tensorflow.contrib.slim.python.slim.data import tfexample_decoder [as 別名]
# 或者: from tensorflow.contrib.slim.python.slim.data.tfexample_decoder import TFExampleDecoder [as 別名]
def testDecodeExampleWithTensor(self):
tensor_shape = (2, 3, 1)
np_array = np.random.rand(2, 3, 1)
example = example_pb2.Example(features=feature_pb2.Features(feature={
'image/depth_map': self._EncodedFloatFeature(np_array),
}))
serialized_example = example.SerializeToString()
with self.test_session():
serialized_example = array_ops.reshape(serialized_example, shape=[])
keys_to_features = {
'image/depth_map':
parsing_ops.FixedLenFeature(
tensor_shape,
dtypes.float32,
default_value=array_ops.zeros(tensor_shape))
}
items_to_handlers = {'depth': tfexample_decoder.Tensor('image/depth_map')}
decoder = tfexample_decoder.TFExampleDecoder(keys_to_features,
items_to_handlers)
[tf_depth] = decoder.decode(serialized_example, ['depth'])
depth = tf_depth.eval()
self.assertAllClose(np_array, depth)
示例13: testDecodeExampleWithItemHandlerCallback
# 需要導入模塊: from tensorflow.contrib.slim.python.slim.data import tfexample_decoder [as 別名]
# 或者: from tensorflow.contrib.slim.python.slim.data.tfexample_decoder import TFExampleDecoder [as 別名]
def testDecodeExampleWithItemHandlerCallback(self):
np.random.seed(0)
tensor_shape = (2, 3, 1)
np_array = np.random.rand(2, 3, 1)
example = example_pb2.Example(features=feature_pb2.Features(feature={
'image/depth_map': self._EncodedFloatFeature(np_array),
}))
serialized_example = example.SerializeToString()
with self.test_session():
serialized_example = array_ops.reshape(serialized_example, shape=[])
keys_to_features = {
'image/depth_map':
parsing_ops.FixedLenFeature(
tensor_shape,
dtypes.float32,
default_value=array_ops.zeros(tensor_shape))
}
def HandleDepth(keys_to_tensors):
depth = list(keys_to_tensors.values())[0]
depth += 1
return depth
items_to_handlers = {
'depth':
tfexample_decoder.ItemHandlerCallback('image/depth_map',
HandleDepth)
}
decoder = tfexample_decoder.TFExampleDecoder(keys_to_features,
items_to_handlers)
[tf_depth] = decoder.decode(serialized_example, ['depth'])
depth = tf_depth.eval()
self.assertAllClose(np_array, depth - 1)
示例14: testDecodeExampleWithBoundingBox
# 需要導入模塊: from tensorflow.contrib.slim.python.slim.data import tfexample_decoder [as 別名]
# 或者: from tensorflow.contrib.slim.python.slim.data.tfexample_decoder import TFExampleDecoder [as 別名]
def testDecodeExampleWithBoundingBox(self):
num_bboxes = 10
np_ymin = np.random.rand(num_bboxes, 1)
np_xmin = np.random.rand(num_bboxes, 1)
np_ymax = np.random.rand(num_bboxes, 1)
np_xmax = np.random.rand(num_bboxes, 1)
np_bboxes = np.hstack([np_ymin, np_xmin, np_ymax, np_xmax])
example = example_pb2.Example(features=feature_pb2.Features(feature={
'image/object/bbox/ymin': self._EncodedFloatFeature(np_ymin),
'image/object/bbox/xmin': self._EncodedFloatFeature(np_xmin),
'image/object/bbox/ymax': self._EncodedFloatFeature(np_ymax),
'image/object/bbox/xmax': self._EncodedFloatFeature(np_xmax),
}))
serialized_example = example.SerializeToString()
with self.test_session():
serialized_example = array_ops.reshape(serialized_example, shape=[])
keys_to_features = {
'image/object/bbox/ymin': parsing_ops.VarLenFeature(dtypes.float32),
'image/object/bbox/xmin': parsing_ops.VarLenFeature(dtypes.float32),
'image/object/bbox/ymax': parsing_ops.VarLenFeature(dtypes.float32),
'image/object/bbox/xmax': parsing_ops.VarLenFeature(dtypes.float32),
}
items_to_handlers = {
'object/bbox':
tfexample_decoder.BoundingBox(['ymin', 'xmin', 'ymax', 'xmax'],
'image/object/bbox/'),
}
decoder = tfexample_decoder.TFExampleDecoder(keys_to_features,
items_to_handlers)
[tf_bboxes] = decoder.decode(serialized_example, ['object/bbox'])
bboxes = tf_bboxes.eval()
self.assertAllClose(np_bboxes, bboxes)
示例15: _get_split
# 需要導入模塊: from tensorflow.contrib.slim.python.slim.data import tfexample_decoder [as 別名]
# 或者: from tensorflow.contrib.slim.python.slim.data.tfexample_decoder import TFExampleDecoder [as 別名]
def _get_split(file_pattern, num_samples, num_views, image_size, vox_size):
"""Get dataset.Dataset for the given dataset file pattern and properties."""
# A dictionary from TF-Example keys to tf.FixedLenFeature instance.
keys_to_features = {
'image': tf.FixedLenFeature(
shape=[num_views, image_size, image_size, 3],
dtype=tf.float32, default_value=None),
'mask': tf.FixedLenFeature(
shape=[num_views, image_size, image_size, 1],
dtype=tf.float32, default_value=None),
'vox': tf.FixedLenFeature(
shape=[vox_size, vox_size, vox_size, 1],
dtype=tf.float32, default_value=None),
}
items_to_handler = {
'image': tfexample_decoder.Tensor(
'image', shape=[num_views, image_size, image_size, 3]),
'mask': tfexample_decoder.Tensor(
'mask', shape=[num_views, image_size, image_size, 1]),
'vox': tfexample_decoder.Tensor(
'vox', shape=[vox_size, vox_size, vox_size, 1])
}
decoder = tfexample_decoder.TFExampleDecoder(
keys_to_features, items_to_handler)
return dataset.Dataset(
data_sources=file_pattern,
reader=tf.TFRecordReader,
decoder=decoder,
num_samples=num_samples,
items_to_descriptions=_ITEMS_TO_DESCRIPTIONS)