本文整理匯總了Python中tensorflow.contrib.slim.python.slim.data.tfexample_decoder.Image方法的典型用法代碼示例。如果您正苦於以下問題:Python tfexample_decoder.Image方法的具體用法?Python tfexample_decoder.Image怎麽用?Python tfexample_decoder.Image使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.contrib.slim.python.slim.data.tfexample_decoder
的用法示例。
在下文中一共展示了tfexample_decoder.Image方法的11個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: testDecodeExampleWithJpegEncoding
# 需要導入模塊: from tensorflow.contrib.slim.python.slim.data import tfexample_decoder [as 別名]
# 或者: from tensorflow.contrib.slim.python.slim.data.tfexample_decoder import Image [as 別名]
def testDecodeExampleWithJpegEncoding(self):
image_shape = (2, 3, 3)
image, serialized_example = self.GenerateImage(
image_format='jpeg', image_shape=image_shape)
decoded_image = self.RunDecodeExample(
serialized_example, tfexample_decoder.Image(), image_format='jpeg')
# Need to use a tolerance of 1 because of noise in the jpeg encode/decode
self.assertAllClose(image, decoded_image, atol=1.001)
示例2: testDecodeExampleWithJPEGEncoding
# 需要導入模塊: from tensorflow.contrib.slim.python.slim.data import tfexample_decoder [as 別名]
# 或者: from tensorflow.contrib.slim.python.slim.data.tfexample_decoder import Image [as 別名]
def testDecodeExampleWithJPEGEncoding(self):
test_image_channels = [1, 3]
for channels in test_image_channels:
image_shape = (2, 3, channels)
image, serialized_example = self.GenerateImage(
image_format='JPEG', image_shape=image_shape)
decoded_image = self.RunDecodeExample(
serialized_example,
tfexample_decoder.Image(channels=channels),
image_format='JPEG')
# Need to use a tolerance of 1 because of noise in the jpeg encode/decode
self.assertAllClose(image, decoded_image, atol=1.001)
示例3: testDecodeExampleWithNoShapeInfo
# 需要導入模塊: from tensorflow.contrib.slim.python.slim.data import tfexample_decoder [as 別名]
# 或者: from tensorflow.contrib.slim.python.slim.data.tfexample_decoder import Image [as 別名]
def testDecodeExampleWithNoShapeInfo(self):
test_image_channels = [1, 3]
for channels in test_image_channels:
image_shape = (2, 3, channels)
_, serialized_example = self.GenerateImage(
image_format='jpeg', image_shape=image_shape)
tf_decoded_image = self.DecodeExample(
serialized_example,
tfexample_decoder.Image(
shape=None, channels=channels),
image_format='jpeg')
self.assertEqual(tf_decoded_image.get_shape().ndims, 3)
示例4: testDecodeExampleWithPngEncoding
# 需要導入模塊: from tensorflow.contrib.slim.python.slim.data import tfexample_decoder [as 別名]
# 或者: from tensorflow.contrib.slim.python.slim.data.tfexample_decoder import Image [as 別名]
def testDecodeExampleWithPngEncoding(self):
test_image_channels = [1, 3, 4]
for channels in test_image_channels:
image_shape = (2, 3, channels)
image, serialized_example = self.GenerateImage(
image_format='png', image_shape=image_shape)
decoded_image = self.RunDecodeExample(
serialized_example,
tfexample_decoder.Image(channels=channels),
image_format='png')
self.assertAllClose(image, decoded_image, atol=0)
示例5: testDecodeExampleWithPNGEncoding
# 需要導入模塊: from tensorflow.contrib.slim.python.slim.data import tfexample_decoder [as 別名]
# 或者: from tensorflow.contrib.slim.python.slim.data.tfexample_decoder import Image [as 別名]
def testDecodeExampleWithPNGEncoding(self):
test_image_channels = [1, 3, 4]
for channels in test_image_channels:
image_shape = (2, 3, channels)
image, serialized_example = self.GenerateImage(
image_format='PNG', image_shape=image_shape)
decoded_image = self.RunDecodeExample(
serialized_example,
tfexample_decoder.Image(channels=channels),
image_format='PNG')
self.assertAllClose(image, decoded_image, atol=0)
示例6: testDecodeExampleWithRAWEncoding
# 需要導入模塊: from tensorflow.contrib.slim.python.slim.data import tfexample_decoder [as 別名]
# 或者: from tensorflow.contrib.slim.python.slim.data.tfexample_decoder import Image [as 別名]
def testDecodeExampleWithRAWEncoding(self):
image_shape = (2, 3, 3)
image, serialized_example = self.GenerateImage(
image_format='RAW', image_shape=image_shape)
decoded_image = self.RunDecodeExample(
serialized_example,
tfexample_decoder.Image(shape=image_shape),
image_format='RAW')
self.assertAllClose(image, decoded_image, atol=0)
示例7: _create_tfrecord_dataset
# 需要導入模塊: from tensorflow.contrib.slim.python.slim.data import tfexample_decoder [as 別名]
# 或者: from tensorflow.contrib.slim.python.slim.data.tfexample_decoder import Image [as 別名]
def _create_tfrecord_dataset(tmpdir):
if not gfile.Exists(tmpdir):
gfile.MakeDirs(tmpdir)
data_sources = test_utils.create_tfrecord_files(tmpdir, num_files=1)
keys_to_features = {
'image/encoded':
parsing_ops.FixedLenFeature(
shape=(), dtype=dtypes.string, default_value=''),
'image/format':
parsing_ops.FixedLenFeature(
shape=(), dtype=dtypes.string, default_value='jpeg'),
'image/class/label':
parsing_ops.FixedLenFeature(
shape=[1],
dtype=dtypes.int64,
default_value=array_ops.zeros(
[1], dtype=dtypes.int64))
}
items_to_handlers = {
'image': tfexample_decoder.Image(),
'label': tfexample_decoder.Tensor('image/class/label'),
}
decoder = tfexample_decoder.TFExampleDecoder(keys_to_features,
items_to_handlers)
return dataset.Dataset(
data_sources=data_sources,
reader=io_ops.TFRecordReader,
decoder=decoder,
num_samples=100,
items_to_descriptions=None)
示例8: items_to_handlers
# 需要導入模塊: from tensorflow.contrib.slim.python.slim.data import tfexample_decoder [as 別名]
# 或者: from tensorflow.contrib.slim.python.slim.data.tfexample_decoder import Image [as 別名]
def items_to_handlers(self):
"""Items to handlers
"""
default = {
'image': tfexample_decoder.Image(
shape=self.params['image_shape'],
image_key='image/encoded',
format_key='image/format'),
'label': tfexample_decoder.Tensor(tensor_key='image/class'),
'text': tfexample_decoder.Tensor(tensor_key='image/text'),
'length': tfexample_decoder.Tensor(tensor_key='image/text_length'),
'name': tfexample_decoder.Tensor(tensor_key='image/name')
}
return default
示例9: make_data_provider
# 需要導入模塊: from tensorflow.contrib.slim.python.slim.data import tfexample_decoder [as 別名]
# 或者: from tensorflow.contrib.slim.python.slim.data.tfexample_decoder import Image [as 別名]
def make_data_provider(self, **kwargs):
context_keys_to_features = {
self.params["image_field"]: tf.FixedLenFeature(
[], dtype=tf.string),
"image/format": tf.FixedLenFeature(
[], dtype=tf.string, default_value=self.params["image_format"]),
}
sequence_keys_to_features = {
self.params["caption_ids_field"]: tf.FixedLenSequenceFeature(
[], dtype=tf.int64),
self.params["caption_tokens_field"]: tf.FixedLenSequenceFeature(
[], dtype=tf.string)
}
items_to_handlers = {
"image": tfexample_decoder.Image(
image_key=self.params["image_field"],
format_key="image/format",
channels=3),
"target_ids":
tfexample_decoder.Tensor(self.params["caption_ids_field"]),
"target_tokens":
tfexample_decoder.Tensor(self.params["caption_tokens_field"]),
"target_len": tfexample_decoder.ItemHandlerCallback(
keys=[self.params["caption_tokens_field"]],
func=lambda x: tf.size(x[self.params["caption_tokens_field"]]))
}
decoder = TFSEquenceExampleDecoder(
context_keys_to_features, sequence_keys_to_features, items_to_handlers)
dataset = tf.contrib.slim.dataset.Dataset(
data_sources=self.params["files"],
reader=tf.TFRecordReader,
decoder=decoder,
num_samples=None,
items_to_descriptions={})
return tf.contrib.slim.dataset_data_provider.DatasetDataProvider(
dataset=dataset,
shuffle=self.params["shuffle"],
num_epochs=self.params["num_epochs"],
**kwargs)
開發者ID:akanimax,項目名稱:natural-language-summary-generation-from-structured-data,代碼行數:47,代碼來源:input_pipeline.py
示例10: get_split
# 需要導入模塊: from tensorflow.contrib.slim.python.slim.data import tfexample_decoder [as 別名]
# 或者: from tensorflow.contrib.slim.python.slim.data.tfexample_decoder import Image [as 別名]
def get_split(split_name, dataset_dir=None):
"""Gets a dataset tuple with instructions for reading cifar100.
Args:
split_name: A train/test split name.
dataset_dir: The base directory of the dataset sources.
Returns:
A `Dataset` namedtuple. Image tensors are integers in [0, 255].
Raises:
ValueError: if `split_name` is not a valid train/test split.
"""
if split_name not in _SPLITS_TO_SIZES:
raise ValueError('split name %s was not recognized.' % split_name)
file_pattern = os.path.join(dataset_dir, _FILE_PATTERN % split_name)
keys_to_features = {
'image/encoded': tf.FixedLenFeature((), tf.string, default_value=''),
'image/format': tf.FixedLenFeature((), tf.string, default_value=''),
'image/class/fine_label': tf.FixedLenFeature(
[1], tf.int64, default_value=tf.zeros([1], dtype=tf.int64)),
'image/class/coarse_label': tf.FixedLenFeature(
[1], tf.int64, default_value=tf.zeros([1], dtype=tf.int64)),
}
items_to_handlers = {
'image': tfexample_decoder.Image(shape=[32, 32, 3]),
'fine_label': tfexample_decoder.Tensor('image/class/fine_label'),
'coarse_label': tfexample_decoder.Tensor('image/class/coarse_label'),
}
decoder = tfexample_decoder.TFExampleDecoder(
keys_to_features, items_to_handlers)
return dataset.Dataset(
data_sources=file_pattern,
reader=tf.TFRecordReader,
decoder=decoder,
num_samples=_SPLITS_TO_SIZES[split_name],
num_classes=_NUM_CLASSES,
items_to_descriptions=_ITEMS_TO_DESCRIPTIONS)
示例11: get_split
# 需要導入模塊: from tensorflow.contrib.slim.python.slim.data import tfexample_decoder [as 別名]
# 或者: from tensorflow.contrib.slim.python.slim.data.tfexample_decoder import Image [as 別名]
def get_split(split_name, dataset_dir=None):
"""Gets a dataset tuple with instructions for reading cifar10.
Args:
split_name: A train/test split name.
dataset_dir: The base directory of the dataset sources.
Returns:
A `Dataset` namedtuple. Image tensors are integers in [0, 255].
Raises:
ValueError: if `split_name` is not a valid train/test split.
"""
if split_name not in _SPLITS_TO_SIZES:
raise ValueError('split name %s was not recognized.' % split_name)
if dataset_dir is None:
dataset_dir = _DATASET_DIR
file_pattern = os.path.join(dataset_dir, _FILE_PATTERN % split_name)
keys_to_features = {
'image/encoded': tf.FixedLenFeature((), tf.string, default_value=''),
'image/format': tf.FixedLenFeature((), tf.string, default_value=''),
'image/class/label': tf.FixedLenFeature(
[1], tf.int64, default_value=tf.zeros([1], dtype=tf.int64)),
}
items_to_handlers = {
'image': tfexample_decoder.Image(shape=[32, 32, 3]),
'label': tfexample_decoder.Tensor('image/class/label'),
}
decoder = tfexample_decoder.TFExampleDecoder(
keys_to_features, items_to_handlers)
return dataset.Dataset(
data_sources=file_pattern,
reader=tf.TFRecordReader,
decoder=decoder,
num_samples=_SPLITS_TO_SIZES[split_name],
num_classes=_NUM_CLASSES,
items_to_descriptions=_ITEMS_TO_DESCRIPTIONS)