本文整理匯總了Python中tensorflow.contrib.slim.one_hot_encoding方法的典型用法代碼示例。如果您正苦於以下問題:Python slim.one_hot_encoding方法的具體用法?Python slim.one_hot_encoding怎麽用?Python slim.one_hot_encoding使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.contrib.slim
的用法示例。
在下文中一共展示了slim.one_hot_encoding方法的11個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_create_summaries_is_runnable
# 需要導入模塊: from tensorflow.contrib import slim [as 別名]
# 或者: from tensorflow.contrib.slim import one_hot_encoding [as 別名]
def test_create_summaries_is_runnable(self):
ocr_model = self.create_model()
data = data_provider.InputEndpoints(
images=self.fake_images,
images_orig=self.fake_images,
labels=self.fake_labels,
labels_one_hot=slim.one_hot_encoding(self.fake_labels,
self.num_char_classes))
endpoints = ocr_model.create_base(
images=self.fake_images, labels_one_hot=None)
charset = create_fake_charset(self.num_char_classes)
summaries = ocr_model.create_summaries(
data, endpoints, charset, is_training=False)
with self.test_session() as sess:
sess.run(tf.global_variables_initializer())
sess.run(tf.local_variables_initializer())
tf.tables_initializer().run()
sess.run(summaries) # just check it is runnable
示例2: char_predictions
# 需要導入模塊: from tensorflow.contrib import slim [as 別名]
# 或者: from tensorflow.contrib.slim import one_hot_encoding [as 別名]
def char_predictions(self, chars_logit):
"""Returns confidence scores (softmax values) for predicted characters.
Args:
chars_logit: chars logits, a tensor with shape
[batch_size x seq_length x num_char_classes]
Returns:
A tuple (ids, log_prob, scores), where:
ids - predicted characters, a int32 tensor with shape
[batch_size x seq_length];
log_prob - a log probability of all characters, a float tensor with
shape [batch_size, seq_length, num_char_classes];
scores - corresponding confidence scores for characters, a float
tensor
with shape [batch_size x seq_length].
"""
log_prob = utils.logits_to_log_prob(chars_logit)
ids = tf.to_int32(tf.argmax(log_prob, dimension=2), name='predicted_chars')
mask = tf.cast(
slim.one_hot_encoding(ids, self._params.num_char_classes), tf.bool)
all_scores = tf.nn.softmax(chars_logit)
selected_scores = tf.boolean_mask(all_scores, mask, name='char_scores')
scores = tf.reshape(selected_scores, shape=(-1, self._params.seq_length))
return ids, log_prob, scores
示例3: char_predictions
# 需要導入模塊: from tensorflow.contrib import slim [as 別名]
# 或者: from tensorflow.contrib.slim import one_hot_encoding [as 別名]
def char_predictions(self, chars_logit):
"""Returns confidence scores (softmax values) for predicted characters.
Args:
chars_logit: chars logits, a tensor with shape
[batch_size x seq_length x num_char_classes]
Returns:
A tuple (ids, log_prob, scores), where:
ids - predicted characters, a int32 tensor with shape
[batch_size x seq_length];
log_prob - a log probability of all characters, a float tensor with
shape [batch_size, seq_length, num_char_classes];
scores - corresponding confidence scores for characters, a float
tensor
with shape [batch_size x seq_length].
"""
log_prob = utils.logits_to_log_prob(chars_logit)
ids = tf.to_int32(tf.argmax(log_prob, axis=2), name='predicted_chars')
mask = tf.cast(
slim.one_hot_encoding(ids, self._params.num_char_classes), tf.bool)
all_scores = tf.nn.softmax(chars_logit)
selected_scores = tf.boolean_mask(all_scores, mask, name='char_scores')
scores = tf.reshape(selected_scores, shape=(-1, self._params.seq_length))
return ids, log_prob, scores
示例4: _top
# 需要導入模塊: from tensorflow.contrib import slim [as 別名]
# 或者: from tensorflow.contrib.slim import one_hot_encoding [as 別名]
def _top(self, prediction, truth, num_tops=1):
# a full sort using top_k
values, indices = tf.nn.top_k(prediction, self.num_classes)
# cut-off threshold
thresholds = values[:, (num_tops - 1):num_tops]
# if > threshold, weight = 1, else weight = 0
valids = tf.cast(prediction > thresholds, tf.float32)
# ties should have weight = 1 / num_ties
ties = tf.equal(prediction, thresholds)
num_ties = tf.reduce_sum(
tf.cast(ties, tf.float32), axis=-1, keepdims=True)
num_ties = tf.py_func(
self._warn_ties, [ties, num_ties, thresholds],
tf.float32, stateful=False)
num_ties = tf.tile(num_ties, [1, self.num_classes])
weights = tf.where(ties, 1 / num_ties, valids)
return slim.one_hot_encoding(truth, self.num_classes) * weights
示例5: det_net_loss
# 需要導入模塊: from tensorflow.contrib import slim [as 別名]
# 或者: from tensorflow.contrib.slim import one_hot_encoding [as 別名]
def det_net_loss(seg_masks_in, reg_masks_in,
seg_preds, reg_preds,
reg_loss_weight=10.0,
epsilon=1e-5):
with tf.variable_scope('loss'):
out_size = seg_preds.get_shape()[1:3]
seg_masks_in_ds = tf.image.resize_images(seg_masks_in[:,:,:,tf.newaxis],
out_size[0], out_size[1],
tf.image.ResizeMethod.NEAREST_NEIGHBOR)
reg_masks_in_ds = tf.image.resize_images(reg_masks_in,
out_size[0], out_size[1],
tf.image.ResizeMethod.NEAREST_NEIGHBOR)
# segmentation loss
seg_masks_onehot = slim.one_hot_encoding(seg_masks_in_ds[:,:,:,0], 2)
seg_loss = - tf.reduce_mean(seg_masks_onehot * tf.log(seg_preds + epsilon))
# regression loss
mask = tf.to_float(seg_masks_in_ds)
reg_loss = tf.reduce_sum(mask * (reg_preds - reg_masks_in_ds)**2)
reg_loss = reg_loss / (tf.reduce_sum(mask) + 1.0)
return seg_loss + reg_loss_weight * reg_loss
示例6: char_predictions
# 需要導入模塊: from tensorflow.contrib import slim [as 別名]
# 或者: from tensorflow.contrib.slim import one_hot_encoding [as 別名]
def char_predictions(self, chars_logit):
"""Returns confidence scores (softmax values) for predicted characters.
Args:
chars_logit: chars logits, a tensor with shape
[batch_size x seq_length x num_char_classes]
Returns:
A tuple (ids, log_prob, scores), where:
ids - predicted characters, a int32 tensor with shape
[batch_size x seq_length];
log_prob - a log probability of all characters, a float tensor with
shape [batch_size, seq_length, num_char_classes];
scores - corresponding confidence scores for characters, a float
tensor
with shape [batch_size x seq_length].
"""
log_prob = utils.logits_to_log_prob(chars_logit)
ids = tf.to_int32(tf.argmax(log_prob, axis=2), name='predicted_chars')
mask = tf.cast(
slim.one_hot_encoding(ids, self._params.num_char_classes), tf.bool)
all_scores = tf.nn.softmax(chars_logit)
selected_scores = tf.boolean_mask(all_scores, mask, name='char_scores')
scores = tf.reshape(selected_scores, shape=(-1, self._params.seq_length))
return ids, log_prob, scores
示例7: class_and_spatial_loss
# 需要導入模塊: from tensorflow.contrib import slim [as 別名]
# 或者: from tensorflow.contrib.slim import one_hot_encoding [as 別名]
def class_and_spatial_loss(logits, onehot_labels, weights, weights2):
logits_shape = tf.shape(logits)
onehot_labels_shape = tf.shape(onehot_labels)
image_labels = tf.reshape(onehot_labels, logits_shape)
class_loss = tf.losses.softmax_cross_entropy(
onehot_labels=onehot_labels,
logits=tf.reshape(logits, [-1, onehot_labels_shape[-1]]),
weights=weights * weights2
)
image_weights = tf.reshape(weights, [logits_shape[0], logits_shape[1], logits_shape[2], 1])
predict_class = tf.argmax(logits, axis=3)
predict_class = slim.one_hot_encoding(predict_class, onehot_labels_shape[-1], 1.0, 0.0)
union = to_float(to_bool(predict_class + image_labels)) * image_weights
intersection = to_float(tf.logical_and(to_bool(predict_class), to_bool(image_labels))) * image_weights
label_on = to_float(tf.greater(tf.reduce_sum(image_labels, axis=[1, 2]), 0))
spatial_loss = ((tf.reduce_sum(intersection, axis=[1, 2]) + 1) / (tf.reduce_sum(union, axis=[1, 2]) + 1))
spatial_loss = tf.reduce_mean(-tf.log(spatial_loss) * label_on)
return class_loss + spatial_loss
示例8: char_one_hot
# 需要導入模塊: from tensorflow.contrib import slim [as 別名]
# 或者: from tensorflow.contrib.slim import one_hot_encoding [as 別名]
def char_one_hot(self, logit):
"""Creates one hot encoding for a logit of a character.
Args:
logit: A tensor with shape [batch_size, num_char_classes].
Returns:
A tensor with shape [batch_size, num_char_classes]
"""
prediction = tf.argmax(logit, dimension=1)
return slim.one_hot_encoding(prediction, self._params.num_char_classes)
示例9: encode_coordinates_alt
# 需要導入模塊: from tensorflow.contrib import slim [as 別名]
# 或者: from tensorflow.contrib.slim import one_hot_encoding [as 別名]
def encode_coordinates_alt(self, net):
"""An alternative implemenation for the encoding coordinates.
Args:
net: a tensor of shape=[batch_size, height, width, num_features]
Returns:
a list of tensors with encoded image coordinates in them.
"""
batch_size, h, w, _ = net.shape.as_list()
h_loc = [
tf.tile(
tf.reshape(
tf.contrib.layers.one_hot_encoding(
tf.constant([i]), num_classes=h), [h, 1]), [1, w])
for i in xrange(h)
]
h_loc = tf.concat([tf.expand_dims(t, 2) for t in h_loc], 2)
w_loc = [
tf.tile(
tf.contrib.layers.one_hot_encoding(tf.constant([i]), num_classes=w),
[h, 1]) for i in xrange(w)
]
w_loc = tf.concat([tf.expand_dims(t, 2) for t in w_loc], 2)
loc = tf.concat([h_loc, w_loc], 2)
loc = tf.tile(tf.expand_dims(loc, 0), [batch_size, 1, 1, 1])
return tf.concat([net, loc], 3)
示例10: fake_labels
# 需要導入模塊: from tensorflow.contrib import slim [as 別名]
# 或者: from tensorflow.contrib.slim import one_hot_encoding [as 別名]
def fake_labels(batch_size, seq_length, num_char_classes):
labels_np = tf.convert_to_tensor(
np.random.randint(
low=0, high=num_char_classes, size=(batch_size, seq_length)))
return slim.one_hot_encoding(labels_np, num_classes=num_char_classes)
示例11: char_one_hot
# 需要導入模塊: from tensorflow.contrib import slim [as 別名]
# 或者: from tensorflow.contrib.slim import one_hot_encoding [as 別名]
def char_one_hot(self, logit):
"""Creates one hot encoding for a logit of a character.
Args:
logit: A tensor with shape [batch_size, num_char_classes].
Returns:
A tensor with shape [batch_size, num_char_classes]
"""
prediction = tf.argmax(logit, axis=1)
return slim.one_hot_encoding(prediction, self._params.num_char_classes)