當前位置: 首頁>>代碼示例>>Python>>正文


Python resnet_v2.resnet_v2_50方法代碼示例

本文整理匯總了Python中tensorflow.contrib.slim.nets.resnet_v2.resnet_v2_50方法的典型用法代碼示例。如果您正苦於以下問題:Python resnet_v2.resnet_v2_50方法的具體用法?Python resnet_v2.resnet_v2_50怎麽用?Python resnet_v2.resnet_v2_50使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.contrib.slim.nets.resnet_v2的用法示例。


在下文中一共展示了resnet_v2.resnet_v2_50方法的2個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: train

# 需要導入模塊: from tensorflow.contrib.slim.nets import resnet_v2 [as 別名]
# 或者: from tensorflow.contrib.slim.nets.resnet_v2 import resnet_v2_50 [as 別名]
def train(self):
        img_size = [self.image_height, self.image_width, self.image_depth]
        train_batch = tf.train.shuffle_batch([read_tfrecord(self.train_file, img_size)],
                    batch_size = self.train_batch_size,
                    capacity = 3000,
                    num_threads = 2,
                    min_after_dequeue = 1000)
        test_batch = tf.train.shuffle_batch([read_tfrecord(self.test_file, img_size)],
                    batch_size = self.test_batch_size,
                    capacity = 500,
                    num_threads = 2,
                    min_after_dequeue = 300)
        init = tf.global_variables_initializer()
        init_fn = slim.assign_from_checkpoint_fn("resnet_v2_50.ckpt", slim.get_model_variables('resnet_v2'))
        saver = tf.train.Saver()
        with tf.Session() as sess:
            sess.run(init)
            init_fn(sess)
            train_writer = tf.summary.FileWriter(self.log_dir + "/train", sess.graph)
            test_writer  = tf.summary.FileWriter(self.log_dir + "/test", sess.graph)
            coord = tf.train.Coordinator()
            threads = tf.train.start_queue_runners(sess=sess, coord=coord)
            inputs_test, outputs_gt_test = build_img_pair(sess.run(test_batch))
            for iter in range(self.max_iteration):
                inputs_train, outputs_gt_train = build_img_pair(sess.run(train_batch))
                # train with dynamic learning rate
                if iter <= 500:
                    self.train_step.run({self.input_data:inputs_train, self.gt:outputs_gt_train,
                                    self.learning_rate:1e-3, self.batch_size:self.train_batch_size})
                elif iter <= self.max_iteration - 1000:
                    self.train_step.run({self.input_data:inputs_train, self.gt:outputs_gt_train,
                                    self.learning_rate:0.5e-3, self.batch_size:self.train_batch_size})
                else:
                    self.train_step.run({self.input_data:inputs_train, self.gt:outputs_gt_train,
                                    self.learning_rate:1e-4, self.batch_size:self.train_batch_size})
                # print training loss and test loss
                if iter%10 == 0:
                    summary_train = sess.run(self.summary, {self.input_data:inputs_train, self.gt:outputs_gt_train,
                                             self.batch_size:self.train_batch_size})
                    train_writer.add_summary(summary_train, iter)
                    train_writer.flush()
                    summary_test = sess.run(self.summary, {self.input_data:inputs_test, self.gt:outputs_gt_test,
                                             self.batch_size:self.test_batch_size})
                    test_writer.add_summary(summary_test, iter)
                    test_writer.flush()
                # record training loss and test loss
                if iter%10 == 0:
                    train_loss  = self.cross_entropy.eval({self.input_data:inputs_train, self.gt:outputs_gt_train,
                                                    self.batch_size:self.train_batch_size})
                    test_loss   = self.cross_entropy.eval({self.input_data:inputs_test, self.gt:outputs_gt_test,
                                                    self.batch_size:self.test_batch_size})
                    print("iter step %d trainning batch loss %f"%(iter, train_loss))
                    print("iter step %d test loss %f\n"%(iter, test_loss))
                # record model
                if iter%100 == 0:
                    saver.save(sess, self.log_dir + "/model.ckpt", global_step=iter)
            coord.request_stop()
            coord.join(threads) 
開發者ID:SaoYan,項目名稱:bgsCNN,代碼行數:60,代碼來源:bgsCNN_v1.py

示例2: build

# 需要導入模塊: from tensorflow.contrib.slim.nets import resnet_v2 [as 別名]
# 或者: from tensorflow.contrib.slim.nets.resnet_v2 import resnet_v2_50 [as 別名]
def build(self, images):
    """Builds a ResNet50 embedder for the input images.

    It assumes that the range of the pixel values in the images tensor is
      [0,255] and should be castable to tf.uint8.

    Args:
      images: a tensor that contains the input images which has the shape of
          NxTxHxWx3 where N is the batch size, T is the maximum length of the
          sequence, H and W are the height and width of the images and C is the
          number of channels.
    Returns:
      The embedding of the input image with the shape of NxTxL where L is the
        embedding size of the output.

    Raises:
      ValueError: if the shape of the input does not agree with the expected
      shape explained in the Args section.
    """
    shape = images.get_shape().as_list()
    if len(shape) != 5:
      raise ValueError(
          'The tensor shape should have 5 elements, {} is provided'.format(
              len(shape)))
    if shape[4] != 3:
      raise ValueError('Three channels are expected for the input image')

    images = tf.cast(images, tf.uint8)
    images = tf.reshape(images,
                        [shape[0] * shape[1], shape[2], shape[3], shape[4]])
    with slim.arg_scope(resnet_v2.resnet_arg_scope()):

      def preprocess_fn(x):
        x = tf.expand_dims(x, 0)
        x = tf.image.resize_bilinear(x, [299, 299],
                                       align_corners=False)
        return(tf.squeeze(x, [0]))

      images = tf.map_fn(preprocess_fn, images, dtype=tf.float32)

      net, _ = resnet_v2.resnet_v2_50(
          images, is_training=False, global_pool=True)
      output = tf.reshape(net, [shape[0], shape[1], -1])
      return output 
開發者ID:generalized-iou,項目名稱:g-tensorflow-models,代碼行數:46,代碼來源:embedders.py


注:本文中的tensorflow.contrib.slim.nets.resnet_v2.resnet_v2_50方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。