本文整理匯總了Python中tensorflow.contrib.slim.nets.resnet_v2.resnet_arg_scope方法的典型用法代碼示例。如果您正苦於以下問題:Python resnet_v2.resnet_arg_scope方法的具體用法?Python resnet_v2.resnet_arg_scope怎麽用?Python resnet_v2.resnet_arg_scope使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.contrib.slim.nets.resnet_v2
的用法示例。
在下文中一共展示了resnet_v2.resnet_arg_scope方法的9個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: forward
# 需要導入模塊: from tensorflow.contrib.slim.nets import resnet_v2 [as 別名]
# 或者: from tensorflow.contrib.slim.nets.resnet_v2 import resnet_arg_scope [as 別名]
def forward(self, inputs, num_classes, data_format, is_training):
sc = resnet_arg_scope(
weight_decay=0.0001,
data_format=data_format,
batch_norm_decay=0.997,
batch_norm_epsilon=1e-5,
batch_norm_scale=True,
activation_fn=tf.nn.relu,
use_batch_norm=True,
is_training=is_training)
with slim.arg_scope(sc):
logits, end_points = resnet_v2_50(
inputs,
num_classes=num_classes,
is_training=is_training,
global_pool=True,
output_stride=None,
reuse=None,
scope=self.scope)
return logits, end_points
示例2: get_model
# 需要導入模塊: from tensorflow.contrib.slim.nets import resnet_v2 [as 別名]
# 或者: from tensorflow.contrib.slim.nets.resnet_v2 import resnet_arg_scope [as 別名]
def get_model(model_name, num_classes):
"""Returns function which creates model.
Args:
model_name: Name of the model.
num_classes: Number of classes.
Raises:
ValueError: If model_name is invalid.
Returns:
Function, which creates model when called.
"""
if model_name.startswith('resnet'):
def resnet_model(images, is_training, reuse=tf.AUTO_REUSE):
with tf.contrib.framework.arg_scope(resnet_v2.resnet_arg_scope()):
resnet_fn = RESNET_MODELS[model_name]
logits, _ = resnet_fn(images, num_classes, is_training=is_training,
reuse=reuse)
logits = tf.reshape(logits, [-1, num_classes])
return logits
return resnet_model
else:
raise ValueError('Invalid model: %s' % model_name)
示例3: resnet_arg_scope
# 需要導入模塊: from tensorflow.contrib.slim.nets import resnet_v2 [as 別名]
# 或者: from tensorflow.contrib.slim.nets.resnet_v2 import resnet_arg_scope [as 別名]
def resnet_arg_scope(weight_decay=0.0001,
activation_fn=tf.nn.relu,
use_layer_norm=True):
"""Defines the default ResNet arg scope.
TODO(gpapan): The batch-normalization related default values above are
appropriate for use in conjunction with the reference ResNet models
released at https://github.com/KaimingHe/deep-residual-networks. When
training ResNets from scratch, they might need to be tuned.
Args:
weight_decay: The weight decay to use for regularizing the model.
activation_fn: The activation function which is used in ResNet.
use_layer_norm: Whether or not to use layer normalization.
Returns:
An `arg_scope` to use for the resnet models.
"""
with slim.arg_scope(
[slim.conv2d],
weights_regularizer=slim.l2_regularizer(weight_decay),
weights_initializer=slim.variance_scaling_initializer(),
activation_fn=activation_fn,
normalizer_fn=slim.layer_norm if use_layer_norm else None,
normalizer_params=None):
# The following implies padding='SAME' for pool1, which makes feature
# alignment easier for dense prediction tasks. This is also used in
# https://github.com/facebook/fb.resnet.torch. However the accompanying
# code of 'Deep Residual Learning for Image Recognition' uses
# padding='VALID' for pool1. You can switch to that choice by setting
# slim.arg_scope([slim.max_pool2d], padding='VALID').
with slim.arg_scope([slim.max_pool2d], padding='SAME') as arg_sc:
return arg_sc
示例4: resnet_arg_scope
# 需要導入模塊: from tensorflow.contrib.slim.nets import resnet_v2 [as 別名]
# 或者: from tensorflow.contrib.slim.nets.resnet_v2 import resnet_arg_scope [as 別名]
def resnet_arg_scope(is_training=True, # 訓練標記
weight_decay=0.0001, # 權重衰減速率
batch_norm_decay=0.997, # BN的衰減速率
batch_norm_epsilon=1e-5, # BN的epsilon默認1e-5
batch_norm_scale=True): # BN的scale默認值
batch_norm_params = { # 定義batch normalization(標準化)的參數字典
'is_training': is_training,
'decay': batch_norm_decay,
'epsilon': batch_norm_epsilon,
'scale': batch_norm_scale,
'updates_collections': tf.GraphKeys.UPDATE_OPS,
}
with slim.arg_scope( # 通過slim.arg_scope將[slim.conv2d]的幾個默認參數設置好
[slim.conv2d],
weights_regularizer=slim.l2_regularizer(weight_decay), # 權重正則器設置為L2正則
weights_initializer=slim.variance_scaling_initializer(), # 權重初始化器
activation_fn=tf.nn.relu, # 激活函數
normalizer_fn=slim.batch_norm, # 標準化器設置為BN
normalizer_params=batch_norm_params):
with slim.arg_scope([slim.batch_norm], **batch_norm_params):
with slim.arg_scope([slim.max_pool2d], padding='SAME') as arg_sc: # ResNet原論文是VALID模式,SAME模式可讓特征對齊更簡單
return arg_sc # 最後將基層嵌套的arg_scope作為結果返回
# 定義核心的bottleneck殘差學習單元
示例5: atrous_spatial_pyramid_pooling
# 需要導入模塊: from tensorflow.contrib.slim.nets import resnet_v2 [as 別名]
# 或者: from tensorflow.contrib.slim.nets.resnet_v2 import resnet_arg_scope [as 別名]
def atrous_spatial_pyramid_pooling(inputs, output_stride, batch_norm_decay, is_training, depth=256):
"""Atrous Spatial Pyramid Pooling.
Args:
inputs: A tensor of size [batch, height, width, channels].
output_stride: The ResNet unit's stride. Determines the rates for atrous convolution.
the rates are (6, 12, 18) when the stride is 16, and doubled when 8.
batch_norm_decay: The moving average decay when estimating layer activation
statistics in batch normalization.
is_training: A boolean denoting whether the input is for training.
depth: The depth of the ResNet unit output.
Returns:
The atrous spatial pyramid pooling output.
"""
with tf.variable_scope("aspp"):
if output_stride not in [8, 16]:
raise ValueError('output_stride must be either 8 or 16.')
atrous_rates = [6, 12, 18]
if output_stride == 8:
atrous_rates = [2 * rate for rate in atrous_rates]
with tf.contrib.slim.arg_scope(resnet_v2.resnet_arg_scope(batch_norm_decay=batch_norm_decay)):
with arg_scope([layers.batch_norm], is_training=is_training):
inputs_size = tf.shape(inputs)[1:3]
# (a) one 1x1 convolution and three 3x3 convolutions with rates = (6, 12, 18) when output stride = 16.
# the rates are doubled when output stride = 8.
conv_1x1 = layers_lib.conv2d(inputs, depth, [1, 1], stride=1, scope="conv_1x1")
conv_3x3_1 = layers_lib.conv2d(inputs, depth, [3, 3], stride=1, rate=atrous_rates[0],
scope='conv_3x3_1')
conv_3x3_2 = layers_lib.conv2d(inputs, depth, [3, 3], stride=1, rate=atrous_rates[1],
scope='conv_3x3_2')
conv_3x3_3 = layers_lib.conv2d(inputs, depth, [3, 3], stride=1, rate=atrous_rates[2],
scope='conv_3x3_3')
# (b) the image-level features
with tf.variable_scope("image_level_features"):
# global average pooling
image_level_features = tf.reduce_mean(inputs, [1, 2], name='global_average_pooling', keepdims=True)
# 1x1 convolution with 256 filters( and batch normalization)
image_level_features = layers_lib.conv2d(image_level_features, depth, [1, 1], stride=1,
scope='conv_1x1')
# bilinearly upsample features
image_level_features = tf.image.resize_bilinear(image_level_features, inputs_size, name='upsample')
net = tf.concat([conv_1x1, conv_3x3_1, conv_3x3_2, conv_3x3_3, image_level_features], axis=3,
name='concat')
net = layers_lib.conv2d(net, depth, [1, 1], stride=1, scope='conv_1x1_concat')
return net
開發者ID:GeneralLi95,項目名稱:deepglobe_land_cover_classification_with_deeplabv3plus,代碼行數:53,代碼來源:deeplab_model.py
示例6: atrous_spatial_pyramid_pooling
# 需要導入模塊: from tensorflow.contrib.slim.nets import resnet_v2 [as 別名]
# 或者: from tensorflow.contrib.slim.nets.resnet_v2 import resnet_arg_scope [as 別名]
def atrous_spatial_pyramid_pooling(inputs, output_stride, batch_norm_decay, is_training, depth=256):
"""Atrous Spatial Pyramid Pooling.
Args:
inputs: A tensor of size [batch, height, width, channels].
output_stride: The ResNet unit's stride. Determines the rates for atrous convolution.
the rates are (6, 12, 18) when the stride is 16, and doubled when 8.
batch_norm_decay: The moving average decay when estimating layer activation
statistics in batch normalization.
is_training: A boolean denoting whether the input is for training.
depth: The depth of the ResNet unit output.
Returns:
The atrous spatial pyramid pooling output.
"""
with tf.variable_scope("aspp"):
if output_stride not in [8, 16]:
raise ValueError('output_stride must be either 8 or 16.')
atrous_rates = [6, 12, 18]
if output_stride == 8:
atrous_rates = [2*rate for rate in atrous_rates]
with tf.contrib.slim.arg_scope(resnet_v2.resnet_arg_scope(batch_norm_decay=batch_norm_decay)):
with arg_scope([layers.batch_norm], is_training=is_training):
inputs_size = tf.shape(inputs)[1:3]
# (a) one 1x1 convolution and three 3x3 convolutions with rates = (6, 12, 18) when output stride = 16.
# the rates are doubled when output stride = 8.
conv_1x1 = layers_lib.conv2d(inputs, depth, [1, 1], stride=1, scope="conv_1x1")
conv_3x3_1 = resnet_utils.conv2d_same(inputs, depth, 3, stride=1, rate=atrous_rates[0], scope='conv_3x3_1')
conv_3x3_2 = resnet_utils.conv2d_same(inputs, depth, 3, stride=1, rate=atrous_rates[1], scope='conv_3x3_2')
conv_3x3_3 = resnet_utils.conv2d_same(inputs, depth, 3, stride=1, rate=atrous_rates[2], scope='conv_3x3_3')
# (b) the image-level features
with tf.variable_scope("image_level_features"):
# global average pooling
image_level_features = tf.reduce_mean(inputs, [1, 2], name='global_average_pooling', keepdims=True)
# 1x1 convolution with 256 filters( and batch normalization)
image_level_features = layers_lib.conv2d(image_level_features, depth, [1, 1], stride=1, scope='conv_1x1')
# bilinearly upsample features
image_level_features = tf.image.resize_bilinear(image_level_features, inputs_size, name='upsample')
net = tf.concat([conv_1x1, conv_3x3_1, conv_3x3_2, conv_3x3_3, image_level_features], axis=3, name='concat')
net = layers_lib.conv2d(net, depth, [1, 1], stride=1, scope='conv_1x1_concat')
return net
示例7: atrous_spatial_pyramid_pooling
# 需要導入模塊: from tensorflow.contrib.slim.nets import resnet_v2 [as 別名]
# 或者: from tensorflow.contrib.slim.nets.resnet_v2 import resnet_arg_scope [as 別名]
def atrous_spatial_pyramid_pooling(inputs, output_stride, batch_norm_decay, is_training, depth=256):
"""Atrous Spatial Pyramid Pooling.
Args:
inputs: A tensor of size [batch, height, width, channels].
output_stride: The ResNet unit's stride. Determines the rates for atrous convolution.
the rates are (6, 12, 18) when the stride is 16, and doubled when 8.
batch_norm_decay: The moving average decay when estimating layer activation
statistics in batch normalization.
is_training: A boolean denoting whether the input is for training.
depth: The depth of the ResNet unit output.
Returns:
The atrous spatial pyramid pooling output.
"""
with tf.variable_scope("aspp"):
if output_stride not in [8, 16]:
raise ValueError('output_stride must be either 8 or 16.')
atrous_rates = [6, 12, 18]
if output_stride == 8:
atrous_rates = [2*rate for rate in atrous_rates]
with tf.contrib.slim.arg_scope(resnet_v2.resnet_arg_scope(batch_norm_decay=batch_norm_decay)):
with arg_scope([layers.batch_norm], is_training=is_training):
inputs_size = tf.shape(inputs)[1:3]
# (a) one 1x1 convolution and three 3x3 convolutions with rates = (6, 12, 18) when output stride = 16.
# the rates are doubled when output stride = 8.
conv_1x1 = layers_lib.conv2d(inputs, depth, [1, 1], stride=1, scope="conv_1x1")
conv_3x3_1 = layers_lib.conv2d(inputs, depth, [3, 3], stride=1, rate=atrous_rates[0], scope='conv_3x3_1')
conv_3x3_2 = layers_lib.conv2d(inputs, depth, [3, 3], stride=1, rate=atrous_rates[1], scope='conv_3x3_2')
conv_3x3_3 = layers_lib.conv2d(inputs, depth, [3, 3], stride=1, rate=atrous_rates[2], scope='conv_3x3_3')
# (b) the image-level features
with tf.variable_scope("image_level_features"):
# global average pooling
image_level_features = tf.reduce_mean(inputs, [1, 2], name='global_average_pooling', keepdims=True)
# 1x1 convolution with 256 filters( and batch normalization)
image_level_features = layers_lib.conv2d(image_level_features, depth, [1, 1], stride=1, scope='conv_1x1')
# bilinearly upsample features
image_level_features = tf.image.resize_bilinear(image_level_features, inputs_size, name='upsample')
net = tf.concat([conv_1x1, conv_3x3_1, conv_3x3_2, conv_3x3_3, image_level_features], axis=3, name='concat')
net = layers_lib.conv2d(net, depth, [1, 1], stride=1, scope='conv_1x1_concat')
return net
示例8: resnet_arg_scope
# 需要導入模塊: from tensorflow.contrib.slim.nets import resnet_v2 [as 別名]
# 或者: from tensorflow.contrib.slim.nets.resnet_v2 import resnet_arg_scope [as 別名]
def resnet_arg_scope(is_training=True,
weight_decay=0.0001,
batch_norm_decay=0.997,
batch_norm_epsilon=1e-5,
batch_norm_scale=True):
"""Defines the default ResNet arg scope.
TODO(gpapan): The batch-normalization related default values above are
appropriate for use in conjunction with the reference ResNet models
released at https://github.com/KaimingHe/deep-residual-networks. When
training ResNets from scratch, they might need to be tuned.
Args:
is_training: Whether or not we are training the parameters in the batch
normalization layers of the model.
weight_decay: The weight decay to use for regularizing the model.
batch_norm_decay: The moving average decay when estimating layer activation
statistics in batch normalization.
batch_norm_epsilon: Small constant to prevent division by zero when
normalizing activations by their variance in batch normalization.
batch_norm_scale: If True, uses an explicit `gamma` multiplier to scale the
activations in the batch normalization layer.
Returns:
An `arg_scope` to use for the resnet models.
"""
batch_norm_params = {
'is_training': is_training,
'decay': batch_norm_decay,
'epsilon': batch_norm_epsilon,
'scale': batch_norm_scale,
'updates_collections': tf.GraphKeys.UPDATE_OPS,
}
with slim.arg_scope(
[slim.conv2d],
weights_regularizer=slim.l2_regularizer(weight_decay),
weights_initializer=slim.variance_scaling_initializer(),
activation_fn=tf.nn.relu,
normalizer_fn=slim.batch_norm,
normalizer_params=batch_norm_params):
with slim.arg_scope([slim.batch_norm], **batch_norm_params):
# The following implies padding='SAME' for pool1, which makes feature
# alignment easier for dense prediction tasks. This is also used in
# https://github.com/facebook/fb.resnet.torch. However the accompanying
# code of 'Deep Residual Learning for Image Recognition' uses
# padding='VALID' for pool1. You can switch to that choice by setting
# slim.arg_scope([slim.max_pool2d], padding='VALID').
with slim.arg_scope([slim.max_pool2d], padding='SAME') as arg_sc:
return arg_sc
示例9: build
# 需要導入模塊: from tensorflow.contrib.slim.nets import resnet_v2 [as 別名]
# 或者: from tensorflow.contrib.slim.nets.resnet_v2 import resnet_arg_scope [as 別名]
def build(self, images):
"""Builds a ResNet50 embedder for the input images.
It assumes that the range of the pixel values in the images tensor is
[0,255] and should be castable to tf.uint8.
Args:
images: a tensor that contains the input images which has the shape of
NxTxHxWx3 where N is the batch size, T is the maximum length of the
sequence, H and W are the height and width of the images and C is the
number of channels.
Returns:
The embedding of the input image with the shape of NxTxL where L is the
embedding size of the output.
Raises:
ValueError: if the shape of the input does not agree with the expected
shape explained in the Args section.
"""
shape = images.get_shape().as_list()
if len(shape) != 5:
raise ValueError(
'The tensor shape should have 5 elements, {} is provided'.format(
len(shape)))
if shape[4] != 3:
raise ValueError('Three channels are expected for the input image')
images = tf.cast(images, tf.uint8)
images = tf.reshape(images,
[shape[0] * shape[1], shape[2], shape[3], shape[4]])
with slim.arg_scope(resnet_v2.resnet_arg_scope()):
def preprocess_fn(x):
x = tf.expand_dims(x, 0)
x = tf.image.resize_bilinear(x, [299, 299],
align_corners=False)
return(tf.squeeze(x, [0]))
images = tf.map_fn(preprocess_fn, images, dtype=tf.float32)
net, _ = resnet_v2.resnet_v2_50(
images, is_training=False, global_pool=True)
output = tf.reshape(net, [shape[0], shape[1], -1])
return output