當前位置: 首頁>>代碼示例>>Python>>正文


Python resnet_v1.resnet_v1方法代碼示例

本文整理匯總了Python中tensorflow.contrib.slim.nets.resnet_v1.resnet_v1方法的典型用法代碼示例。如果您正苦於以下問題:Python resnet_v1.resnet_v1方法的具體用法?Python resnet_v1.resnet_v1怎麽用?Python resnet_v1.resnet_v1使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.contrib.slim.nets.resnet_v1的用法示例。


在下文中一共展示了resnet_v1.resnet_v1方法的13個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: testEndPointsV1

# 需要導入模塊: from tensorflow.contrib.slim.nets import resnet_v1 [as 別名]
# 或者: from tensorflow.contrib.slim.nets.resnet_v1 import resnet_v1 [as 別名]
def testEndPointsV1(self):
    """Test the end points of a tiny v1 bottleneck network."""
    bottleneck = resnet_v1.bottleneck
    blocks = [resnet_utils.Block('block1', bottleneck, [(4, 1, 1), (4, 1, 2)]),
              resnet_utils.Block('block2', bottleneck, [(8, 2, 1), (8, 2, 1)])]
    inputs = create_test_input(2, 32, 16, 3)
    with slim.arg_scope(resnet_utils.resnet_arg_scope()):
      _, end_points = self._resnet_plain(inputs, blocks, scope='tiny')
    expected = [
        'tiny/block1/unit_1/bottleneck_v1/shortcut',
        'tiny/block1/unit_1/bottleneck_v1/conv1',
        'tiny/block1/unit_1/bottleneck_v1/conv2',
        'tiny/block1/unit_1/bottleneck_v1/conv3',
        'tiny/block1/unit_2/bottleneck_v1/conv1',
        'tiny/block1/unit_2/bottleneck_v1/conv2',
        'tiny/block1/unit_2/bottleneck_v1/conv3',
        'tiny/block2/unit_1/bottleneck_v1/shortcut',
        'tiny/block2/unit_1/bottleneck_v1/conv1',
        'tiny/block2/unit_1/bottleneck_v1/conv2',
        'tiny/block2/unit_1/bottleneck_v1/conv3',
        'tiny/block2/unit_2/bottleneck_v1/conv1',
        'tiny/block2/unit_2/bottleneck_v1/conv2',
        'tiny/block2/unit_2/bottleneck_v1/conv3']
    self.assertItemsEqual(expected, end_points) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:26,代碼來源:resnet_v1_test.py

示例2: _resnet_small

# 需要導入模塊: from tensorflow.contrib.slim.nets import resnet_v1 [as 別名]
# 或者: from tensorflow.contrib.slim.nets.resnet_v1 import resnet_v1 [as 別名]
def _resnet_small(self,
                    inputs,
                    num_classes=None,
                    global_pool=True,
                    output_stride=None,
                    include_root_block=True,
                    reuse=None,
                    scope='resnet_v1_small'):
    """A shallow and thin ResNet v1 for faster tests."""
    bottleneck = resnet_v1.bottleneck
    blocks = [
        resnet_utils.Block(
            'block1', bottleneck, [(4, 1, 1)] * 2 + [(4, 1, 2)]),
        resnet_utils.Block(
            'block2', bottleneck, [(8, 2, 1)] * 2 + [(8, 2, 2)]),
        resnet_utils.Block(
            'block3', bottleneck, [(16, 4, 1)] * 2 + [(16, 4, 2)]),
        resnet_utils.Block(
            'block4', bottleneck, [(32, 8, 1)] * 2)]
    return resnet_v1.resnet_v1(inputs, blocks, num_classes, global_pool,
                               output_stride, include_root_block, reuse, scope) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:23,代碼來源:resnet_v1_test.py

示例3: restnet_head

# 需要導入模塊: from tensorflow.contrib.slim.nets import resnet_v1 [as 別名]
# 或者: from tensorflow.contrib.slim.nets.resnet_v1 import resnet_v1 [as 別名]
def restnet_head(input, is_training, scope_name):
    block4 = [resnet_v1_block('block4', base_depth=512, num_units=3, stride=1)]

    with slim.arg_scope(resnet_arg_scope(is_training=is_training)):
        C5, _ = resnet_v1.resnet_v1(input,
                                    block4,
                                    global_pool=False,
                                    include_root_block=False,
                                    scope=scope_name)
        # C5 = tf.Print(C5, [tf.shape(C5)], summarize=10, message='C5_shape')
        C5_flatten = tf.reduce_mean(C5, axis=[1, 2], keep_dims=False, name='global_average_pooling')
        # C5_flatten = tf.Print(C5_flatten, [tf.shape(C5_flatten)], summarize=10, message='C5_flatten_shape')

    # global average pooling C5 to obtain fc layers
    return C5_flatten 
開發者ID:DetectionTeamUCAS,項目名稱:R2CNN_Faster-RCNN_Tensorflow,代碼行數:17,代碼來源:resnet.py

示例4: GetGamma

# 需要導入模塊: from tensorflow.contrib.slim.nets import resnet_v1 [as 別名]
# 或者: from tensorflow.contrib.slim.nets.resnet_v1 import resnet_v1 [as 別名]
def GetGamma(self, short_name):
    tokens = short_name.split('/')
    name = ('resnet_v1/block1/' + tokens[0] + '/bottleneck_v1/' + tokens[1] +
            '/BatchNorm/gamma')
    return self._gammas[name] 
開發者ID:google-research,項目名稱:morph-net,代碼行數:7,代碼來源:flop_regularizer_test.py

示例5: GetOp

# 需要導入模塊: from tensorflow.contrib.slim.nets import resnet_v1 [as 別名]
# 或者: from tensorflow.contrib.slim.nets.resnet_v1 import resnet_v1 [as 別名]
def GetOp(self, short_name):
    if short_name == 'FC':
      return tf.get_default_graph().get_operation_by_name('FC/MatMul')
    tokens = short_name.split('/')
    name = ('resnet_v1/block1/' + tokens[0] + '/bottleneck_v1/' + tokens[1] +
            '/Conv2D')
    return tf.get_default_graph().get_operation_by_name(name) 
開發者ID:google-research,項目名稱:morph-net,代碼行數:9,代碼來源:flop_regularizer_test.py

示例6: resnet_arg_scope

# 需要導入模塊: from tensorflow.contrib.slim.nets import resnet_v1 [as 別名]
# 或者: from tensorflow.contrib.slim.nets.resnet_v1 import resnet_v1 [as 別名]
def resnet_arg_scope(is_training=True,
                     weight_decay=cfg.TRAIN.WEIGHT_DECAY,
                     batch_norm_decay=0.997,
                     batch_norm_epsilon=1e-5,
                     batch_norm_scale=True):
  batch_norm_params = {
    # NOTE 'is_training' here does not work because inside resnet it gets reset:
    # https://github.com/tensorflow/models/blob/master/slim/nets/resnet_v1.py#L187
    'is_training': False,
    'decay': batch_norm_decay,
    'epsilon': batch_norm_epsilon,
    'scale': batch_norm_scale,
    'trainable': cfg.RESNET.BN_TRAIN,
    'updates_collections': ops.GraphKeys.UPDATE_OPS
  }

  with arg_scope(
      [slim.conv2d],
      weights_regularizer=regularizers.l2_regularizer(weight_decay),
      weights_initializer=initializers.variance_scaling_initializer(),
      trainable=is_training,
      activation_fn=nn_ops.relu,
      normalizer_fn=layers.batch_norm,
      normalizer_params=batch_norm_params):
    with arg_scope([layers.batch_norm], **batch_norm_params) as arg_sc:
      return arg_sc 
開發者ID:pengzhou1108,項目名稱:RGB-N,代碼行數:28,代碼來源:resnet_fusion_noise.py

示例7: testAtrousValuesBottleneck

# 需要導入模塊: from tensorflow.contrib.slim.nets import resnet_v1 [as 別名]
# 或者: from tensorflow.contrib.slim.nets.resnet_v1 import resnet_v1 [as 別名]
def testAtrousValuesBottleneck(self):
    self._atrousValues(resnet_v1.bottleneck) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:4,代碼來源:resnet_v1_test.py

示例8: testSuccessResnetV1

# 需要導入模塊: from tensorflow.contrib.slim.nets import resnet_v1 [as 別名]
# 或者: from tensorflow.contrib.slim.nets.resnet_v1 import resnet_v1 [as 別名]
def testSuccessResnetV1(self):
    build_resnet(resnet_v1.resnet_v1_block, resnet_v1.resnet_v1)
    mapper = gamma_mapper.ConvGammaMapperByConnectivity()
    # Here the mapping between convolutions and batch-norms is simple one to
    # one.
    for block in (1, 2):
      self.assertGammaMatchesConv(
          mapper, 'resnet_v1/block%d/unit_1/bottleneck_v1/shortcut' % block)

      for unit in (1, 2):
        for conv in (1, 2, 3):
          self.assertGammaMatchesConv(
              mapper, 'resnet_v1/block%d/unit_%d/bottleneck_v1/conv%d' %
              (block, unit, conv)) 
開發者ID:generalized-iou,項目名稱:g-tensorflow-models,代碼行數:16,代碼來源:gamma_mapper_test.py

示例9: getGamma

# 需要導入模塊: from tensorflow.contrib.slim.nets import resnet_v1 [as 別名]
# 或者: from tensorflow.contrib.slim.nets.resnet_v1 import resnet_v1 [as 別名]
def getGamma(self, short_name):
    tokens = short_name.split('/')
    name = ('resnet_v1/block1/' + tokens[0] + '/bottleneck_v1/' + tokens[1] +
            '/BatchNorm/gamma')
    return self._gammas[name] 
開發者ID:generalized-iou,項目名稱:g-tensorflow-models,代碼行數:7,代碼來源:flop_regularizer_test.py

示例10: getOp

# 需要導入模塊: from tensorflow.contrib.slim.nets import resnet_v1 [as 別名]
# 或者: from tensorflow.contrib.slim.nets.resnet_v1 import resnet_v1 [as 別名]
def getOp(self, short_name):
    if short_name == 'FC':
      return tf.get_default_graph().get_operation_by_name('FC/MatMul')
    tokens = short_name.split('/')
    name = ('resnet_v1/block1/' + tokens[0] + '/bottleneck_v1/' + tokens[1] +
            '/Conv2D')
    return tf.get_default_graph().get_operation_by_name(name) 
開發者ID:generalized-iou,項目名稱:g-tensorflow-models,代碼行數:9,代碼來源:flop_regularizer_test.py

示例11: resnet_base

# 需要導入模塊: from tensorflow.contrib.slim.nets import resnet_v1 [as 別名]
# 或者: from tensorflow.contrib.slim.nets.resnet_v1 import resnet_v1 [as 別名]
def resnet_base(img_batch, scope_name, is_training=True):
    '''
    this code is derived from light-head rcnn.
    https://github.com/zengarden/light_head_rcnn

    It is convenient to freeze blocks. So we adapt this mode.
    '''
    if scope_name == 'resnet_v1_50':
        middle_num_units = 6
    elif scope_name == 'resnet_v1_101':
        middle_num_units = 23
    else:
        raise NotImplementedError('We only support resnet_v1_50 or resnet_v1_101. Check your network name....yjr')

    blocks = [resnet_v1_block('block1', base_depth=64, num_units=3, stride=2),
              resnet_v1_block('block2', base_depth=128, num_units=4, stride=2),
              # use stride 1 for the last conv4 layer.

              resnet_v1_block('block3', base_depth=256, num_units=middle_num_units, stride=1)]
              # when use fpn . stride list is [1, 2, 2]

    with slim.arg_scope(resnet_arg_scope(is_training=False)):
        with tf.variable_scope(scope_name, scope_name):
            # Do the first few layers manually, because 'SAME' padding can behave inconsistently
            # for images of different sizes: sometimes 0, sometimes 1
            net = resnet_utils.conv2d_same(
                img_batch, 64, 7, stride=2, scope='conv1')
            net = tf.pad(net, [[0, 0], [1, 1], [1, 1], [0, 0]])
            net = slim.max_pool2d(
                net, [3, 3], stride=2, padding='VALID', scope='pool1')

    not_freezed = [False] * cfgs.FIXED_BLOCKS + (4-cfgs.FIXED_BLOCKS)*[True]
    # Fixed_Blocks can be 1~3

    with slim.arg_scope(resnet_arg_scope(is_training=(is_training and not_freezed[0]))):
        C2, _ = resnet_v1.resnet_v1(net,
                                    blocks[0:1],
                                    global_pool=False,
                                    include_root_block=False,
                                    scope=scope_name)

    # C2 = tf.Print(C2, [tf.shape(C2)], summarize=10, message='C2_shape')

    with slim.arg_scope(resnet_arg_scope(is_training=(is_training and not_freezed[1]))):
        C3, _ = resnet_v1.resnet_v1(C2,
                                    blocks[1:2],
                                    global_pool=False,
                                    include_root_block=False,
                                    scope=scope_name)

    # C3 = tf.Print(C3, [tf.shape(C3)], summarize=10, message='C3_shape')

    with slim.arg_scope(resnet_arg_scope(is_training=(is_training and not_freezed[2]))):
        C4, _ = resnet_v1.resnet_v1(C3,
                                    blocks[2:3],
                                    global_pool=False,
                                    include_root_block=False,
                                    scope=scope_name)

    # C4 = tf.Print(C4, [tf.shape(C4)], summarize=10, message='C4_shape')
    return C4 
開發者ID:DetectionTeamUCAS,項目名稱:R2CNN_Faster-RCNN_Tensorflow,代碼行數:63,代碼來源:resnet.py

示例12: testCost

# 需要導入模塊: from tensorflow.contrib.slim.nets import resnet_v1 [as 別名]
# 或者: from tensorflow.contrib.slim.nets.resnet_v1 import resnet_v1 [as 別名]
def testCost(self):
    self.BuildGraphWithBatchNorm(resnet_v1.resnet_v1, resnet_v1.resnet_v1_block)
    self.InitGamma()
    res_alive = np.logical_or(
        np.logical_or(
            self.GetGamma('unit_1/shortcut') > self._threshold,
            self.GetGamma('unit_1/conv3') > self._threshold),
        self.GetGamma('unit_2/conv3') > self._threshold)

    self.gamma_flop_reg = flop_regularizer.GammaFlopsRegularizer(
        [self.net.op], self._threshold)

    expected = {}
    expected['unit_1/shortcut'] = (
        self.GetCoeff('unit_1/shortcut') * np.sum(res_alive) * NUM_CHANNELS)
    expected['unit_1/conv1'] = (
        self.GetCoeff('unit_1/conv1') * self.NumAlive('unit_1/conv1') *
        NUM_CHANNELS)
    expected['unit_1/conv2'] = (
        self.GetCoeff('unit_1/conv2') * self.NumAlive('unit_1/conv2') *
        self.NumAlive('unit_1/conv1'))
    expected['unit_1/conv3'] = (
        self.GetCoeff('unit_1/conv3') * np.sum(res_alive) *
        self.NumAlive('unit_1/conv2'))
    expected['unit_2/conv1'] = (
        self.GetCoeff('unit_2/conv1') * self.NumAlive('unit_2/conv1') *
        np.sum(res_alive))
    expected['unit_2/conv2'] = (
        self.GetCoeff('unit_2/conv2') * self.NumAlive('unit_2/conv2') *
        self.NumAlive('unit_2/conv1'))
    expected['unit_2/conv3'] = (
        self.GetCoeff('unit_2/conv3') * np.sum(res_alive) *
        self.NumAlive('unit_2/conv2'))
    expected['FC'] = 2.0 * np.sum(res_alive) * 23.0

    # TODO(e1): Is there a way to use Parametrized Tests to make this more
    # elegant?
    with self.cached_session():
      for short_name in expected:
        cost = self.gamma_flop_reg.get_cost([self.GetOp(short_name)]).eval()
        self.assertEqual(expected[short_name], cost)

      self.assertEqual(
          sum(expected.values()),
          self.gamma_flop_reg.get_cost().eval()) 
開發者ID:google-research,項目名稱:morph-net,代碼行數:47,代碼來源:flop_regularizer_test.py

示例13: testCost

# 需要導入模塊: from tensorflow.contrib.slim.nets import resnet_v1 [as 別名]
# 或者: from tensorflow.contrib.slim.nets.resnet_v1 import resnet_v1 [as 別名]
def testCost(self):
    self.buildGraphWithBatchNorm(resnet_v1.resnet_v1, resnet_v1.resnet_v1_block)
    self.initGamma()
    res_alive = np.logical_or(
        np.logical_or(
            self.getGamma('unit_1/shortcut') > self._threshold,
            self.getGamma('unit_1/conv3') > self._threshold),
        self.getGamma('unit_2/conv3') > self._threshold)

    self.gamma_flop_reg = flop_regularizer.GammaFlopsRegularizer(
        [self.net.op], self._threshold)

    expected = {}
    expected['unit_1/shortcut'] = (
        self.getCoeff('unit_1/shortcut') * np.sum(res_alive) * NUM_CHANNELS)
    expected['unit_1/conv1'] = (
        self.getCoeff('unit_1/conv1') * self.numAlive('unit_1/conv1') *
        NUM_CHANNELS)
    expected['unit_1/conv2'] = (
        self.getCoeff('unit_1/conv2') * self.numAlive('unit_1/conv2') *
        self.numAlive('unit_1/conv1'))
    expected['unit_1/conv3'] = (
        self.getCoeff('unit_1/conv3') * np.sum(res_alive) *
        self.numAlive('unit_1/conv2'))
    expected['unit_2/conv1'] = (
        self.getCoeff('unit_2/conv1') * self.numAlive('unit_2/conv1') *
        np.sum(res_alive))
    expected['unit_2/conv2'] = (
        self.getCoeff('unit_2/conv2') * self.numAlive('unit_2/conv2') *
        self.numAlive('unit_2/conv1'))
    expected['unit_2/conv3'] = (
        self.getCoeff('unit_2/conv3') * np.sum(res_alive) *
        self.numAlive('unit_2/conv2'))
    expected['FC'] = 2.0 * np.sum(res_alive) * 23.0

    # TODO: Is there a way to use Parametrized Tests to make this more
    # elegant?
    with self.test_session():
      for short_name in expected:
        cost = self.gamma_flop_reg.get_cost([self.getOp(short_name)]).eval()
        self.assertEqual(expected[short_name], cost)

      self.assertEqual(
          sum(expected.values()),
          self.gamma_flop_reg.get_cost().eval()) 
開發者ID:generalized-iou,項目名稱:g-tensorflow-models,代碼行數:47,代碼來源:flop_regularizer_test.py


注:本文中的tensorflow.contrib.slim.nets.resnet_v1.resnet_v1方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。