本文整理匯總了Python中tensorflow.contrib.slim.nets.resnet_utils.Block方法的典型用法代碼示例。如果您正苦於以下問題:Python resnet_utils.Block方法的具體用法?Python resnet_utils.Block怎麽用?Python resnet_utils.Block使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.contrib.slim.nets.resnet_utils
的用法示例。
在下文中一共展示了resnet_utils.Block方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: resnet_v2_50
# 需要導入模塊: from tensorflow.contrib.slim.nets import resnet_utils [as 別名]
# 或者: from tensorflow.contrib.slim.nets.resnet_utils import Block [as 別名]
def resnet_v2_50(inputs,
num_classes=None,
global_pool=True,
output_stride=None,
reuse=None,
scope='resnet_v2_50'):
"""ResNet-50 model of [1]. See resnet_v2() for arg and return description."""
blocks = [
resnet_utils.Block(
'block1', bottleneck, [(256, 64, 1)] * 2 + [(256, 64, 2)]),
resnet_utils.Block(
'block2', bottleneck, [(512, 128, 1)] * 3 + [(512, 128, 2)]),
resnet_utils.Block(
'block3', bottleneck, [(1024, 256, 1)] * 5 + [(1024, 256, 2)]),
resnet_utils.Block(
'block4', bottleneck, [(2048, 512, 1)] * 3)]
return resnet_v2(inputs, blocks, num_classes, global_pool, output_stride,
include_root_block=True, reuse=reuse, scope=scope)
示例2: resnet_v2_101
# 需要導入模塊: from tensorflow.contrib.slim.nets import resnet_utils [as 別名]
# 或者: from tensorflow.contrib.slim.nets.resnet_utils import Block [as 別名]
def resnet_v2_101(inputs,
num_classes=None,
global_pool=True,
output_stride=None,
reuse=None,
scope='resnet_v2_101'):
"""ResNet-101 model of [1]. See resnet_v2() for arg and return description."""
blocks = [
resnet_utils.Block(
'block1', bottleneck, [(256, 64, 1)] * 2 + [(256, 64, 2)]),
resnet_utils.Block(
'block2', bottleneck, [(512, 128, 1)] * 3 + [(512, 128, 2)]),
resnet_utils.Block(
'block3', bottleneck, [(1024, 256, 1)] * 22 + [(1024, 256, 2)]),
resnet_utils.Block(
'block4', bottleneck, [(2048, 512, 1)] * 3)]
return resnet_v2(inputs, blocks, num_classes, global_pool, output_stride,
include_root_block=True, reuse=reuse, scope=scope)
示例3: resnet_v2_152
# 需要導入模塊: from tensorflow.contrib.slim.nets import resnet_utils [as 別名]
# 或者: from tensorflow.contrib.slim.nets.resnet_utils import Block [as 別名]
def resnet_v2_152(inputs,
num_classes=None,
global_pool=True,
output_stride=None,
reuse=None,
scope='resnet_v2_152'):
"""ResNet-152 model of [1]. See resnet_v2() for arg and return description."""
blocks = [
resnet_utils.Block(
'block1', bottleneck, [(256, 64, 1)] * 2 + [(256, 64, 2)]),
resnet_utils.Block(
'block2', bottleneck, [(512, 128, 1)] * 7 + [(512, 128, 2)]),
resnet_utils.Block(
'block3', bottleneck, [(1024, 256, 1)] * 35 + [(1024, 256, 2)]),
resnet_utils.Block(
'block4', bottleneck, [(2048, 512, 1)] * 3)]
return resnet_v2(inputs, blocks, num_classes, global_pool, output_stride,
include_root_block=True, reuse=reuse, scope=scope)
示例4: resnet_v2_200
# 需要導入模塊: from tensorflow.contrib.slim.nets import resnet_utils [as 別名]
# 或者: from tensorflow.contrib.slim.nets.resnet_utils import Block [as 別名]
def resnet_v2_200(inputs,
num_classes=None,
global_pool=True,
output_stride=None,
reuse=None,
scope='resnet_v2_200'):
"""ResNet-200 model of [2]. See resnet_v2() for arg and return description."""
blocks = [
resnet_utils.Block(
'block1', bottleneck, [(256, 64, 1)] * 2 + [(256, 64, 2)]),
resnet_utils.Block(
'block2', bottleneck, [(512, 128, 1)] * 23 + [(512, 128, 2)]),
resnet_utils.Block(
'block3', bottleneck, [(1024, 256, 1)] * 35 + [(1024, 256, 2)]),
resnet_utils.Block(
'block4', bottleneck, [(2048, 512, 1)] * 3)]
return resnet_v2(inputs, blocks, num_classes, global_pool, output_stride,
include_root_block=True, reuse=reuse, scope=scope)
示例5: testEndPointsV2
# 需要導入模塊: from tensorflow.contrib.slim.nets import resnet_utils [as 別名]
# 或者: from tensorflow.contrib.slim.nets.resnet_utils import Block [as 別名]
def testEndPointsV2(self):
"""Test the end points of a tiny v2 bottleneck network."""
bottleneck = resnet_v2.bottleneck
blocks = [resnet_utils.Block('block1', bottleneck, [(4, 1, 1), (4, 1, 2)]),
resnet_utils.Block('block2', bottleneck, [(8, 2, 1), (8, 2, 1)])]
inputs = create_test_input(2, 32, 16, 3)
with slim.arg_scope(resnet_utils.resnet_arg_scope()):
_, end_points = self._resnet_plain(inputs, blocks, scope='tiny')
expected = [
'tiny/block1/unit_1/bottleneck_v2/shortcut',
'tiny/block1/unit_1/bottleneck_v2/conv1',
'tiny/block1/unit_1/bottleneck_v2/conv2',
'tiny/block1/unit_1/bottleneck_v2/conv3',
'tiny/block1/unit_2/bottleneck_v2/conv1',
'tiny/block1/unit_2/bottleneck_v2/conv2',
'tiny/block1/unit_2/bottleneck_v2/conv3',
'tiny/block2/unit_1/bottleneck_v2/shortcut',
'tiny/block2/unit_1/bottleneck_v2/conv1',
'tiny/block2/unit_1/bottleneck_v2/conv2',
'tiny/block2/unit_1/bottleneck_v2/conv3',
'tiny/block2/unit_2/bottleneck_v2/conv1',
'tiny/block2/unit_2/bottleneck_v2/conv2',
'tiny/block2/unit_2/bottleneck_v2/conv3']
self.assertItemsEqual(expected, end_points)
示例6: _resnet_small
# 需要導入模塊: from tensorflow.contrib.slim.nets import resnet_utils [as 別名]
# 或者: from tensorflow.contrib.slim.nets.resnet_utils import Block [as 別名]
def _resnet_small(self,
inputs,
num_classes=None,
global_pool=True,
output_stride=None,
include_root_block=True,
reuse=None,
scope='resnet_v2_small'):
"""A shallow and thin ResNet v2 for faster tests."""
bottleneck = resnet_v2.bottleneck
blocks = [
resnet_utils.Block(
'block1', bottleneck, [(4, 1, 1)] * 2 + [(4, 1, 2)]),
resnet_utils.Block(
'block2', bottleneck, [(8, 2, 1)] * 2 + [(8, 2, 2)]),
resnet_utils.Block(
'block3', bottleneck, [(16, 4, 1)] * 2 + [(16, 4, 2)]),
resnet_utils.Block(
'block4', bottleneck, [(32, 8, 1)] * 2)]
return resnet_v2.resnet_v2(inputs, blocks, num_classes, global_pool,
output_stride, include_root_block, reuse, scope)
示例7: testEndPointsV1
# 需要導入模塊: from tensorflow.contrib.slim.nets import resnet_utils [as 別名]
# 或者: from tensorflow.contrib.slim.nets.resnet_utils import Block [as 別名]
def testEndPointsV1(self):
"""Test the end points of a tiny v1 bottleneck network."""
bottleneck = resnet_v1.bottleneck
blocks = [resnet_utils.Block('block1', bottleneck, [(4, 1, 1), (4, 1, 2)]),
resnet_utils.Block('block2', bottleneck, [(8, 2, 1), (8, 2, 1)])]
inputs = create_test_input(2, 32, 16, 3)
with slim.arg_scope(resnet_utils.resnet_arg_scope()):
_, end_points = self._resnet_plain(inputs, blocks, scope='tiny')
expected = [
'tiny/block1/unit_1/bottleneck_v1/shortcut',
'tiny/block1/unit_1/bottleneck_v1/conv1',
'tiny/block1/unit_1/bottleneck_v1/conv2',
'tiny/block1/unit_1/bottleneck_v1/conv3',
'tiny/block1/unit_2/bottleneck_v1/conv1',
'tiny/block1/unit_2/bottleneck_v1/conv2',
'tiny/block1/unit_2/bottleneck_v1/conv3',
'tiny/block2/unit_1/bottleneck_v1/shortcut',
'tiny/block2/unit_1/bottleneck_v1/conv1',
'tiny/block2/unit_1/bottleneck_v1/conv2',
'tiny/block2/unit_1/bottleneck_v1/conv3',
'tiny/block2/unit_2/bottleneck_v1/conv1',
'tiny/block2/unit_2/bottleneck_v1/conv2',
'tiny/block2/unit_2/bottleneck_v1/conv3']
self.assertItemsEqual(expected, end_points)
示例8: resnet_v1_50
# 需要導入模塊: from tensorflow.contrib.slim.nets import resnet_utils [as 別名]
# 或者: from tensorflow.contrib.slim.nets.resnet_utils import Block [as 別名]
def resnet_v1_50(inputs,
num_classes=None,
global_pool=True,
output_stride=None,
reuse=None,
scope='resnet_v1_50'):
"""ResNet-50 model of [1]. See resnet_v1() for arg and return description."""
blocks = [
resnet_utils.Block(
'block1', bottleneck, [(256, 64, 1)] * 2 + [(256, 64, 2)]),
resnet_utils.Block(
'block2', bottleneck, [(512, 128, 1)] * 3 + [(512, 128, 2)]),
resnet_utils.Block(
'block3', bottleneck, [(1024, 256, 1)] * 5 + [(1024, 256, 2)]),
resnet_utils.Block(
'block4', bottleneck, [(2048, 512, 1)] * 3)
]
return resnet_v1(inputs, blocks, num_classes, global_pool, output_stride,
include_root_block=True, reuse=reuse, scope=scope)
示例9: resnet_v1_101
# 需要導入模塊: from tensorflow.contrib.slim.nets import resnet_utils [as 別名]
# 或者: from tensorflow.contrib.slim.nets.resnet_utils import Block [as 別名]
def resnet_v1_101(inputs,
num_classes=None,
global_pool=True,
output_stride=None,
reuse=None,
scope='resnet_v1_101'):
"""ResNet-101 model of [1]. See resnet_v1() for arg and return description."""
blocks = [
resnet_utils.Block(
'block1', bottleneck, [(256, 64, 1)] * 2 + [(256, 64, 2)]),
resnet_utils.Block(
'block2', bottleneck, [(512, 128, 1)] * 3 + [(512, 128, 2)]),
resnet_utils.Block(
'block3', bottleneck, [(1024, 256, 1)] * 22 + [(1024, 256, 2)]),
resnet_utils.Block(
'block4', bottleneck, [(2048, 512, 1)] * 3)
]
return resnet_v1(inputs, blocks, num_classes, global_pool, output_stride,
include_root_block=True, reuse=reuse, scope=scope)
示例10: resnet_v1_152
# 需要導入模塊: from tensorflow.contrib.slim.nets import resnet_utils [as 別名]
# 或者: from tensorflow.contrib.slim.nets.resnet_utils import Block [as 別名]
def resnet_v1_152(inputs,
num_classes=None,
global_pool=True,
output_stride=None,
reuse=None,
scope='resnet_v1_152'):
"""ResNet-152 model of [1]. See resnet_v1() for arg and return description."""
blocks = [
resnet_utils.Block(
'block1', bottleneck, [(256, 64, 1)] * 2 + [(256, 64, 2)]),
resnet_utils.Block(
'block2', bottleneck, [(512, 128, 1)] * 7 + [(512, 128, 2)]),
resnet_utils.Block(
'block3', bottleneck, [(1024, 256, 1)] * 35 + [(1024, 256, 2)]),
resnet_utils.Block(
'block4', bottleneck, [(2048, 512, 1)] * 3)]
return resnet_v1(inputs, blocks, num_classes, global_pool, output_stride,
include_root_block=True, reuse=reuse, scope=scope)
示例11: resnet_v1_200
# 需要導入模塊: from tensorflow.contrib.slim.nets import resnet_utils [as 別名]
# 或者: from tensorflow.contrib.slim.nets.resnet_utils import Block [as 別名]
def resnet_v1_200(inputs,
num_classes=None,
global_pool=True,
output_stride=None,
reuse=None,
scope='resnet_v1_200'):
"""ResNet-200 model of [2]. See resnet_v1() for arg and return description."""
blocks = [
resnet_utils.Block(
'block1', bottleneck, [(256, 64, 1)] * 2 + [(256, 64, 2)]),
resnet_utils.Block(
'block2', bottleneck, [(512, 128, 1)] * 23 + [(512, 128, 2)]),
resnet_utils.Block(
'block3', bottleneck, [(1024, 256, 1)] * 35 + [(1024, 256, 2)]),
resnet_utils.Block(
'block4', bottleneck, [(2048, 512, 1)] * 3)]
return resnet_v1(inputs, blocks, num_classes, global_pool, output_stride,
include_root_block=True, reuse=reuse, scope=scope)
示例12: resnet_v1_beta_block
# 需要導入模塊: from tensorflow.contrib.slim.nets import resnet_utils [as 別名]
# 或者: from tensorflow.contrib.slim.nets.resnet_utils import Block [as 別名]
def resnet_v1_beta_block(scope, base_depth, num_units, stride):
"""Helper function for creating a resnet_v1 beta variant bottleneck block.
Args:
scope: The scope of the block.
base_depth: The depth of the bottleneck layer for each unit.
num_units: The number of units in the block.
stride: The stride of the block, implemented as a stride in the last unit.
All other units have stride=1.
Returns:
A resnet_v1 bottleneck block.
"""
return resnet_utils.Block(scope, bottleneck, [{
'depth': base_depth * 4,
'depth_bottleneck': base_depth,
'stride': 1,
'unit_rate': 1
}] * (num_units - 1) + [{
'depth': base_depth * 4,
'depth_bottleneck': base_depth,
'stride': stride,
'unit_rate': 1
}])
示例13: resnet_v1_beta_block
# 需要導入模塊: from tensorflow.contrib.slim.nets import resnet_utils [as 別名]
# 或者: from tensorflow.contrib.slim.nets.resnet_utils import Block [as 別名]
def resnet_v1_beta_block(scope, base_depth, num_units, stride):
"""Helper function for creating a resnet_v1 beta variant bottleneck block.
Args:
scope: The scope of the block.
base_depth: The depth of the bottleneck layer for each unit.
num_units: The number of units in the block.
stride: The stride of the block, implemented as a stride in the last unit.
All other units have stride=1.
Returns:
A resnet_v1 bottleneck block.
"""
return resnet_utils.Block(scope, bottleneck, [{
'depth': base_depth * 4,
'depth_bottleneck': base_depth,
'stride': 1,
'unit_rate': 1
}] * (num_units - 1) + [{
'depth': base_depth * 4,
'depth_bottleneck': base_depth,
'stride': stride,
'unit_rate': 1
}])
示例14: resnet_v1_small_beta_block
# 需要導入模塊: from tensorflow.contrib.slim.nets import resnet_utils [as 別名]
# 或者: from tensorflow.contrib.slim.nets.resnet_utils import Block [as 別名]
def resnet_v1_small_beta_block(scope, base_depth, num_units, stride):
"""Helper function for creating a resnet_18 beta variant bottleneck block.
Args:
scope: The scope of the block.
base_depth: The depth of the bottleneck layer for each unit.
num_units: The number of units in the block.
stride: The stride of the block, implemented as a stride in the last unit.
All other units have stride=1.
Returns:
A resnet_18 bottleneck block.
"""
block_args = []
for _ in range(num_units - 1):
block_args.append({'depth': base_depth, 'stride': 1, 'unit_rate': 1})
block_args.append({'depth': base_depth, 'stride': stride, 'unit_rate': 1})
return resnet_utils.Block(scope, lite_bottleneck, block_args)
示例15: resnet_v1_beta_block
# 需要導入模塊: from tensorflow.contrib.slim.nets import resnet_utils [as 別名]
# 或者: from tensorflow.contrib.slim.nets.resnet_utils import Block [as 別名]
def resnet_v1_beta_block(scope, base_depth, num_units, stride):
"""Helper function for creating a resnet_v1 beta variant bottleneck block.
Args:
scope: The scope of the block.
base_depth: The depth of the bottleneck layer for each unit.
num_units: The number of units in the block.
stride: The stride of the block, implemented as a stride in the last unit.
All other units have stride=1.
Returns:
A resnet_v1 bottleneck block.
"""
return resnet_utils.Block(scope, bottleneck, [{
'depth': base_depth * 4,
'depth_bottleneck': base_depth,
'stride': 1,
'unit_rate': 1
}] * (num_units - 1) + [{
'depth': base_depth * 4,
'depth_bottleneck': base_depth,
'stride': stride,
'unit_rate': 1
}])