當前位置: 首頁>>代碼示例>>Python>>正文


Python slim.model_variable方法代碼示例

本文整理匯總了Python中tensorflow.contrib.slim.model_variable方法的典型用法代碼示例。如果您正苦於以下問題:Python slim.model_variable方法的具體用法?Python slim.model_variable怎麽用?Python slim.model_variable使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.contrib.slim的用法示例。


在下文中一共展示了slim.model_variable方法的11個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _add_pggan_kwargs

# 需要導入模塊: from tensorflow.contrib import slim [as 別名]
# 或者: from tensorflow.contrib.slim import model_variable [as 別名]
def _add_pggan_kwargs(data_batched, sources, targets, alpha_grow, generator_kwargs, discriminator_kwargs):
    additional_kwargs = {'is_growing': FLAGS.is_growing, 'alpha_grow': alpha_grow, 'do_self_attention': FLAGS.do_self_attention, 'self_attention_hw': FLAGS.self_attention_hw}
    generator_kwargs.update(**additional_kwargs)
    discriminator_kwargs.update(**additional_kwargs)
    generator_kwargs['do_pixel_norm'] = FLAGS.do_pixel_norm
    generator_kwargs['dtype'] = targets.dtype

    if FLAGS.use_gdrop:
      discriminator_kwargs[GDROP_STRENGTH_VAR_NAME] = slim.model_variable(GDROP_STRENGTH_VAR_NAME, shape=[],
                                                                          dtype=targets.dtype,
                                                                          initializer=tf.zeros_initializer,
                                                                          trainable=False)
    else:
      discriminator_kwargs['do_dgrop'] = False

    # Conditional related params.
    if FLAGS.use_conditional_labels:
      conditional_labels = data_batched.get('conditional_labels', None)
      if conditional_labels is not None:
        generator_kwargs['arg_scope_fn'] = functools.partial(pggan.conditional_progressive_gan_generator_arg_scope,
                                                             conditional_layer=conditional_labels)
        source_embed = GanModel._embed_one_hot(conditional_labels, FLAGS.conditional_embed_dim, )
        discriminator_kwargs['conditional_embed'] = source_embed 
開發者ID:jerryli27,項目名稱:TwinGAN,代碼行數:25,代碼來源:image_generation.py

示例2: __init__

# 需要導入模塊: from tensorflow.contrib import slim [as 別名]
# 或者: from tensorflow.contrib.slim import model_variable [as 別名]
def __init__(self, net, labels_one_hot, model_params, method_params):
    """Stores argument in member variable for further use.

    Args:
      net: A tensor with shape [batch_size, num_features, feature_size] which
        contains some extracted image features.
      labels_one_hot: An optional (can be None) ground truth labels for the
        input features. Is a tensor with shape
        [batch_size, seq_length, num_char_classes]
      model_params: A namedtuple with model parameters (model.ModelParams).
      method_params: A SequenceLayerParams instance.
    """
    self._params = model_params
    self._mparams = method_params
    self._net = net
    self._labels_one_hot = labels_one_hot
    self._batch_size = net.get_shape().dims[0].value

    # Initialize parameters for char logits which will be computed on the fly
    # inside an LSTM decoder.
    self._char_logits = {}
    regularizer = slim.l2_regularizer(self._mparams.weight_decay)
    self._softmax_w = slim.model_variable(
        'softmax_w',
        [self._mparams.num_lstm_units, self._params.num_char_classes],
        initializer=orthogonal_initializer,
        regularizer=regularizer)
    self._softmax_b = slim.model_variable(
        'softmax_b', [self._params.num_char_classes],
        initializer=tf.zeros_initializer(),
        regularizer=regularizer) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:33,代碼來源:sequence_layers.py

示例3: vlad

# 需要導入模塊: from tensorflow.contrib import slim [as 別名]
# 或者: from tensorflow.contrib.slim import model_variable [as 別名]
def vlad(feature_map, config, is_training):
    with tf.variable_scope('vlad'):
        training = config['train_vlad'] and is_training
        if config['intermediate_proj']:
            with slim.arg_scope([slim.conv2d, slim.batch_norm], trainable=training):
                with slim.arg_scope([slim.batch_norm], is_training=training):
                    feature_map = slim.conv2d(
                            feature_map, config['intermediate_proj'], 1, rate=1,
                            activation_fn=None, normalizer_fn=slim.batch_norm,
                            weights_initializer=slim.initializers.xavier_initializer(),
                            trainable=training, scope='pre_proj')

        batch_size = tf.shape(feature_map)[0]
        feature_dim = feature_map.shape[-1]

        with slim.arg_scope([slim.batch_norm], trainable=training, is_training=training):
            memberships = slim.conv2d(
                    feature_map, config['n_clusters'], 1, rate=1,
                    activation_fn=None, normalizer_fn=slim.batch_norm,
                    weights_initializer=slim.initializers.xavier_initializer(),
                    trainable=training, scope='memberships')
            memberships = tf.nn.softmax(memberships, axis=-1)

        clusters = slim.model_variable(
                'clusters', shape=[1, 1, 1, config['n_clusters'], feature_dim],
                initializer=slim.initializers.xavier_initializer(), trainable=training)
        residuals = clusters - tf.expand_dims(feature_map, axis=3)
        residuals *= tf.expand_dims(memberships, axis=-1)
        descriptor = tf.reduce_sum(residuals, axis=[1, 2])

        descriptor = tf.nn.l2_normalize(descriptor, axis=1)  # intra-normalization
        descriptor = tf.reshape(descriptor,
                                [batch_size, feature_dim*config['n_clusters']])
        descriptor = tf.nn.l2_normalize(descriptor, axis=1)
        return descriptor 
開發者ID:ethz-asl,項目名稱:hierarchical_loc,代碼行數:37,代碼來源:layers.py

示例4: _make_graph

# 需要導入模塊: from tensorflow.contrib import slim [as 別名]
# 或者: from tensorflow.contrib.slim import model_variable [as 別名]
def _make_graph(self):
        self.logger.info("Generating testing graph on {} GPUs ...".format(self.cfg.nr_gpus))

        with tf.variable_scope(tf.get_variable_scope()):
            for i in range(self.cfg.nr_gpus):
                with tf.device('/gpu:%d' % i):
                    with tf.name_scope('tower_%d' % i) as name_scope:
                        with slim.arg_scope([slim.model_variable, slim.variable], device='/device:CPU:0'):
                            self.net.make_network(is_train=False)
                            self._input_list.append(self.net.get_inputs())
                            self._output_list.append(self.net.get_outputs())

                        tf.get_variable_scope().reuse_variables()

        self._outputs = aggregate_batch(self._output_list)

        # run_meta = tf.RunMetadata()
        # opts = tf.profiler.ProfileOptionBuilder.float_operation()
        # flops = tf.profiler.profile(self.sess.graph, run_meta=run_meta, cmd='op', options=opts)
        #
        # opts = tf.profiler.ProfileOptionBuilder.trainable_variables_parameter()
        # params = tf.profiler.profile(self.sess.graph, run_meta=run_meta, cmd='op', options=opts)

        # print("{:,} --- {:,}".format(flops.total_float_ops, params.total_parameters))
        # from IPython import embed; embed()

        return self._outputs 
開發者ID:chenyilun95,項目名稱:tf-cpn,代碼行數:29,代碼來源:base.py

示例5: _scope

# 需要導入模塊: from tensorflow.contrib import slim [as 別名]
# 或者: from tensorflow.contrib.slim import model_variable [as 別名]
def _scope(self, layer_node, params):
        # scopes
        scope_list = []
        # pin variables on cpu
        cpu_context = slim.arg_scope([slim.model_variable], device='/cpu:0')
        scope_list.append(cpu_context)
        # variable scope with custom getter for overriders
        self._add_var_scope(layer_node, params, scope_list)
        # custom nested scope
        return self._scope_functional(scope_list) 
開發者ID:deep-fry,項目名稱:mayo,代碼行數:12,代碼來源:transform.py

示例6: _add_pggan_kwargs

# 需要導入模塊: from tensorflow.contrib import slim [as 別名]
# 或者: from tensorflow.contrib.slim import model_variable [as 別名]
def _add_pggan_kwargs(data_batched, sources, targets, alpha_grow, generator_kwargs, discriminator_kwargs):
    """Adds pggan related function parameters to generator, encoder, and discriminator kwargs."""

    additional_kwargs = {'is_growing': FLAGS.is_growing, 'alpha_grow': alpha_grow,
                         'do_self_attention': FLAGS.do_self_attention, 'self_attention_hw': FLAGS.self_attention_hw}
    generator_kwargs.update(**additional_kwargs)
    generator_kwargs['do_pixel_norm'] = FLAGS.do_pixel_norm
    assert targets.dtype == sources.dtype, 'Source and target dtype should be the same.'
    generator_kwargs['dtype'] = targets.dtype if targets is not None else None

    generator_source_kwargs = copy.copy(generator_kwargs)
    generator_source_kwargs['target_shape'] = sources.shape
    generator_target_kwargs = copy.copy(generator_kwargs)
    generator_target_kwargs['target_shape'] = targets.shape

    encoder_kwargs = copy.copy(generator_kwargs)

    discriminator_kwargs.update(**additional_kwargs)
    if FLAGS.use_gdrop:
      discriminator_kwargs[GDROP_STRENGTH_VAR_NAME] = slim.model_variable(GDROP_STRENGTH_VAR_NAME, shape=[],
                                                                          dtype=targets.dtype,
                                                                          initializer=tf.zeros_initializer,
                                                                          trainable=False)
    else:
      discriminator_kwargs['do_dgrop'] = False

    discriminator_source_kwargs = copy.copy(discriminator_kwargs)
    discriminator_target_kwargs = copy.copy(discriminator_kwargs)
    if FLAGS.use_conditional_labels:
      raise NotImplementedError('TwinGAN does not support `use_conditional_labels` flag yet.')
    return (encoder_kwargs, generator_source_kwargs, generator_target_kwargs,
            discriminator_source_kwargs, discriminator_target_kwargs) 
開發者ID:jerryli27,項目名稱:TwinGAN,代碼行數:34,代碼來源:twingan.py

示例7: _make_graph

# 需要導入模塊: from tensorflow.contrib import slim [as 別名]
# 或者: from tensorflow.contrib.slim import model_variable [as 別名]
def _make_graph(self):
        self.logger.info("Generating testing graph on {} GPUs ...".format(self.cfg.num_gpus))

        with tf.variable_scope(tf.get_variable_scope()):
            for i in range(self.cfg.num_gpus):
                with tf.device('/gpu:%d' % i):
                    with tf.name_scope('tower_%d' % i) as name_scope:
                        with slim.arg_scope([slim.model_variable, slim.variable], device='/device:CPU:0'):
                            self.net.make_network(is_train=False)
                            self._input_list.append(self.net.get_inputs())
                            self._output_list.append(self.net.get_outputs())

                        tf.get_variable_scope().reuse_variables()

        self._outputs = aggregate_batch(self._output_list)

        # run_meta = tf.RunMetadata()
        # opts = tf.profiler.ProfileOptionBuilder.float_operation()
        # flops = tf.profiler.profile(self.sess.graph, run_meta=run_meta, cmd='op', options=opts)
        #
        # opts = tf.profiler.ProfileOptionBuilder.trainable_variables_parameter()
        # params = tf.profiler.profile(self.sess.graph, run_meta=run_meta, cmd='op', options=opts)

        # print("{:,} --- {:,}".format(flops.total_float_ops, params.total_parameters))
        # from IPython import embed; embed()

        return self._outputs 
開發者ID:mks0601,項目名稱:PoseFix_RELEASE,代碼行數:29,代碼來源:base.py

示例8: __init__

# 需要導入模塊: from tensorflow.contrib import slim [as 別名]
# 或者: from tensorflow.contrib.slim import model_variable [as 別名]
def __init__(self, name, inputs, tower_setup, for_imagenet_classification=False):
    super(ResNet50, self).__init__()
    #for now always freeze the batch norm of the resnet
    inp, n_features_inp = prepare_input(inputs)
    #for grayscale
    if n_features_inp == 1:
      inp = tf.concat([inp, inp, inp], axis=-1)
    else:
      assert n_features_inp == 3
    #to keep the preprocessing consistent with our usual preprocessing, revert the std normalization
    from ReID_net.datasets.Util.Normalization import IMAGENET_RGB_STD
    #I double checked it, this seems to be the right preprocessing
    inp = inp * IMAGENET_RGB_STD * 255

    num_classes = 1000 if for_imagenet_classification else None
    #note that we do not add the name to the variable scope at the moment, so that if we would use multiple resnets
    #in the same network, this will throw an error.
    #but if we add the name, the loading of pretrained weights will be difficult
    with slim.arg_scope(slim.nets.resnet_v1.resnet_arg_scope()):
      with slim.arg_scope([slim.model_variable, slim.variable], device=tower_setup.variable_device):
        logits, end_points = slim.nets.resnet_v1.resnet_v1_50(inp, num_classes=num_classes, is_training=False)
    #mapping from https://github.com/wuzheng-sjtu/FastFPN/blob/master/libs/nets/pyramid_network.py
    mapping = {"C1": "resnet_v1_50/conv1/Relu:0",
               "C2": "resnet_v1_50/block1/unit_2/bottleneck_v1",
               "C3": "resnet_v1_50/block2/unit_3/bottleneck_v1",
               "C4": "resnet_v1_50/block3/unit_5/bottleneck_v1",
               "C5": "resnet_v1_50/block4/unit_3/bottleneck_v1"}
    if for_imagenet_classification:
      self.outputs = [tf.nn.softmax(logits)]
    else:
      # use C3 up to C5
      self.outputs = [end_points[mapping[c]] for c in ["C3", "C4", "C5"]]
    self.n_params = 25600000  # roughly 25.6M 
開發者ID:JonathonLuiten,項目名稱:PReMVOS,代碼行數:35,代碼來源:NetworkLayers.py

示例9: prelu

# 需要導入模塊: from tensorflow.contrib import slim [as 別名]
# 或者: from tensorflow.contrib.slim import model_variable [as 別名]
def prelu(inputs, data_format='NHWC', scope=None):

    with tf.variable_scope(scope, default_name='prelu'):

        channel_dim = 1 if data_format == 'NCHW' else 3
        inputs_shape = inputs.get_shape().as_list()
        alpha_shape = [1 for i in range(len(inputs_shape))]
        alpha_shape[channel_dim] = inputs_shape[channel_dim]
        alpha = slim.model_variable(
            'weights', alpha_shape,
            initializer=tf.constant_initializer(0.25))

        outputs = tf.where(inputs > 0, inputs, inputs * alpha)

        return outputs 
開發者ID:blaueck,項目名稱:tf-mtcnn,代碼行數:17,代碼來源:caffe2tf.py

示例10: vlad

# 需要導入模塊: from tensorflow.contrib import slim [as 別名]
# 或者: from tensorflow.contrib.slim import model_variable [as 別名]
def vlad(feature_map, config, training, mask=None):
    with tf.variable_scope('vlad'):
        if config['intermediate_proj']:
            with slim.arg_scope([slim.conv2d, slim.batch_norm], trainable=training):
                with slim.arg_scope([slim.batch_norm], is_training=training):
                    feature_map = slim.conv2d(
                            feature_map, config['intermediate_proj'], 1, rate=1,
                            activation_fn=None, normalizer_fn=slim.batch_norm,
                            weights_initializer=slim.initializers.xavier_initializer(),
                            trainable=training, scope='pre_proj')

        batch_size = tf.shape(feature_map)[0]
        feature_dim = feature_map.shape[-1]

        with slim.arg_scope([slim.batch_norm], trainable=training, is_training=training):
            memberships = slim.conv2d(
                    feature_map, config['n_clusters'], 1, rate=1,
                    activation_fn=None, normalizer_fn=slim.batch_norm,
                    weights_initializer=slim.initializers.xavier_initializer(),
                    trainable=training, scope='memberships')
            memberships = tf.nn.softmax(memberships, axis=-1)

        clusters = slim.model_variable(
                'clusters', shape=[1, 1, 1, config['n_clusters'], feature_dim],
                initializer=slim.initializers.xavier_initializer(), trainable=training)
        residuals = clusters - tf.expand_dims(feature_map, axis=3)
        residuals *= tf.expand_dims(memberships, axis=-1)
        if mask is not None:
            residuals *= tf.to_float(mask)[..., tf.newaxis, tf.newaxis]
        descriptor = tf.reduce_sum(residuals, axis=[1, 2])

        descriptor = tf.nn.l2_normalize(descriptor, axis=1)  # intra-normalization
        descriptor = tf.reshape(descriptor,
                                [batch_size, feature_dim*config['n_clusters']])
        descriptor = tf.nn.l2_normalize(descriptor, axis=1)
        return descriptor 
開發者ID:ethz-asl,項目名稱:hfnet,代碼行數:38,代碼來源:layers.py

示例11: compute_votes

# 需要導入模塊: from tensorflow.contrib import slim [as 別名]
# 或者: from tensorflow.contrib.slim import model_variable [as 別名]
def compute_votes(poses_i, o, regularizer, tag=False):
  """Compute the votes by multiplying input poses by transformation matrix.
  
  Multiply the poses of layer i by the transform matrix to compute the votes for 
  layer j.
  
  Author:
    Ashley Gritzman 19/10/2018
    
  Credit: 
    Suofei Zhang's implementation on GitHub, "Matrix-Capsules-EM-Tensorflow"
    https://github.com/www0wwwjs1/Matrix-Capsules-EM-Tensorflow
    
  Args: 
    poses_i: 
      poses in layer i tiled according to the kernel
      (N*OH*OW, kh*kw*i, 16)
      (64*5*5, 9*8, 16) 
    o: number of output capsules, also called "parent_caps"
    regularizer:    
    
  Returns:
    votes: 
      (N*OH*OW, kh*kw*i, o, 16)
      (64*5*5, 9*8, 32, 16)
  """
  
  batch_size = int(poses_i.get_shape()[0]) # 64*5*5
  kh_kw_i = int(poses_i.get_shape()[1]) # 9*8
  
  # (64*5*5, 9*8, 16) -> (64*5*5, 9*8, 1, 4, 4)
  output = tf.reshape(poses_i, shape=[batch_size, kh_kw_i, 1, 4, 4])
  
  # the output of capsule is miu, the mean of a Gaussian, and activation, the 
  # sum of probabilities it has no relationship with the absolute values of w 
  # and votes using weights with bigger stddev helps numerical stability
  w = slim.model_variable('w', shape=[1, kh_kw_i, o, 4, 4], 
                          dtype=tf.float32, 
                          initializer=tf.truncated_normal_initializer(
                            mean=0.0, 
                            stddev=1.0), #1.0
                          regularizer=regularizer)
  
  # (1, 9*8, 32, 4, 4) -> (64*5*5, 9*8, 32, 4, 4)
  w = tf.tile(w, [batch_size, 1, 1, 1, 1])
  
  # (64*5*5, 9*8, 1, 4, 4) -> (64*5*5, 9*8, 32, 4, 4)
  output = tf.tile(output, [1, 1, o, 1, 1])
  
  # (64*5*5, 9*8, 32, 4, 4) x (64*5*5, 9*8, 32, 4, 4) 
  # -> (64*5*5, 9*8, 32, 4, 4)
  mult = tf.matmul(output, w)
  
  # (64*5*5, 9*8, 32, 4, 4) -> (64*5*5, 9*8, 32, 16)
  votes = tf.reshape(mult, [batch_size, kh_kw_i, o, 16])
  
  # tf.summary.histogram('w', w) 

  return votes 
開發者ID:IBM,項目名稱:matrix-capsules-with-em-routing,代碼行數:61,代碼來源:utils.py


注:本文中的tensorflow.contrib.slim.model_variable方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。