本文整理匯總了Python中tensorflow.contrib.slim.max_pool2d方法的典型用法代碼示例。如果您正苦於以下問題:Python slim.max_pool2d方法的具體用法?Python slim.max_pool2d怎麽用?Python slim.max_pool2d使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.contrib.slim
的用法示例。
在下文中一共展示了slim.max_pool2d方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: max_pool_views
# 需要導入模塊: from tensorflow.contrib import slim [as 別名]
# 或者: from tensorflow.contrib.slim import max_pool2d [as 別名]
def max_pool_views(self, nets_list):
"""Max pool across all nets in spatial dimensions.
Args:
nets_list: A list of 4D tensors with identical size.
Returns:
A tensor with the same size as any input tensors.
"""
batch_size, height, width, num_features = [
d.value for d in nets_list[0].get_shape().dims
]
xy_flat_shape = (batch_size, 1, height * width, num_features)
nets_for_merge = []
with tf.variable_scope('max_pool_views', values=nets_list):
for net in nets_list:
nets_for_merge.append(tf.reshape(net, xy_flat_shape))
merged_net = tf.concat(nets_for_merge, 1)
net = slim.max_pool2d(
merged_net, kernel_size=[len(nets_list), 1], stride=1)
net = tf.reshape(net, (batch_size, height, width, num_features))
return net
示例2: AddMaxPool
# 需要導入模塊: from tensorflow.contrib import slim [as 別名]
# 或者: from tensorflow.contrib.slim import max_pool2d [as 別名]
def AddMaxPool(self, prev_layer, index):
"""Add a maxpool layer.
Args:
prev_layer: Input tensor.
index: Position in model_str to start parsing
Returns:
Output tensor, end index in model_str.
"""
pattern = re.compile(R'(Mp)({\w+})?(\d+),(\d+)(?:,(\d+),(\d+))?')
m = pattern.match(self.model_str, index)
if m is None:
return None, None
name = self._GetLayerName(m.group(0), index, m.group(2))
height = int(m.group(3))
width = int(m.group(4))
y_stride = height if m.group(5) is None else m.group(5)
x_stride = width if m.group(6) is None else m.group(6)
self.reduction_factors[1] *= y_stride
self.reduction_factors[2] *= x_stride
return slim.max_pool2d(
prev_layer, [height, width], [y_stride, x_stride],
padding='SAME',
scope=name), m.end()
示例3: E
# 需要導入模塊: from tensorflow.contrib import slim [as 別名]
# 或者: from tensorflow.contrib.slim import max_pool2d [as 別名]
def E(self, images, is_training = False, reuse=False):
if images.get_shape()[3] == 3:
images = tf.image.rgb_to_grayscale(images)
with tf.variable_scope('encoder',reuse=reuse):
with slim.arg_scope([slim.fully_connected], activation_fn=tf.nn.relu):
with slim.arg_scope([slim.conv2d], activation_fn=tf.nn.relu, padding='VALID'):
net = slim.conv2d(images, 64, 5, scope='conv1')
net = slim.max_pool2d(net, 2, stride=2, scope='pool1')
net = slim.conv2d(net, 128, 5, scope='conv2')
net = slim.max_pool2d(net, 2, stride=2, scope='pool2')
net = tf.contrib.layers.flatten(net)
net = slim.fully_connected(net, 1024, activation_fn=tf.nn.relu, scope='fc3')
net = slim.dropout(net, 0.5, is_training=is_training)
net = slim.fully_connected(net, self.hidden_repr_size, activation_fn=tf.tanh,scope='fc4')
# dropout here or not?
#~ net = slim.dropout(net, 0.5, is_training=is_training)
return net
示例4: _extra_conv_arg_scope_with_bn
# 需要導入模塊: from tensorflow.contrib import slim [as 別名]
# 或者: from tensorflow.contrib.slim import max_pool2d [as 別名]
def _extra_conv_arg_scope_with_bn(weight_decay=0.00001,
activation_fn=None,
batch_norm_decay=0.997,
batch_norm_epsilon=1e-5,
batch_norm_scale=True):
batch_norm_params = {
'decay': batch_norm_decay,
'epsilon': batch_norm_epsilon,
'scale': batch_norm_scale,
'updates_collections': tf.GraphKeys.UPDATE_OPS,
}
with slim.arg_scope(
[slim.conv2d],
weights_regularizer=slim.l2_regularizer(weight_decay),
weights_initializer=slim.variance_scaling_initializer(),
activation_fn=tf.nn.relu,
normalizer_fn=slim.batch_norm,
normalizer_params=batch_norm_params):
with slim.arg_scope([slim.batch_norm], **batch_norm_params):
with slim.arg_scope([slim.max_pool2d], padding='SAME') as arg_sc:
return arg_sc
示例5: subsample
# 需要導入模塊: from tensorflow.contrib import slim [as 別名]
# 或者: from tensorflow.contrib.slim import max_pool2d [as 別名]
def subsample(inputs, factor, scope=None):
"""Subsamples the input along the spatial dimensions.
Args:
inputs: A `Tensor` of size [batch, height_in, width_in, channels].
factor: The subsampling factor.
scope: Optional variable_scope.
Returns:
output: A `Tensor` of size [batch, height_out, width_out, channels] with the
input, either intact (if factor == 1) or subsampled (if factor > 1).
"""
if factor == 1:
return inputs
else:
return slim.max_pool2d(inputs, [1, 1], stride=factor, scope=scope)
示例6: reduction_a
# 需要導入模塊: from tensorflow.contrib import slim [as 別名]
# 或者: from tensorflow.contrib.slim import max_pool2d [as 別名]
def reduction_a(net, k, l, m, n):
with tf.variable_scope('Branch_0'):
tower_conv = slim.conv2d(net, n, 3, stride=2, padding='VALID',
scope='Conv2d_1a_3x3')
with tf.variable_scope('Branch_1'):
tower_conv1_0 = slim.conv2d(net, k, 1, scope='Conv2d_0a_1x1')
tower_conv1_1 = slim.conv2d(tower_conv1_0, l, 3,
scope='Conv2d_0b_3x3')
tower_conv1_2 = slim.conv2d(tower_conv1_1, m, 3,
stride=2, padding='VALID',
scope='Conv2d_1a_3x3')
with tf.variable_scope('Branch_2'):
tower_pool = slim.max_pool2d(net, 3, stride=2, padding='VALID',
scope='MaxPool_1a_3x3')
net = tf.concat([tower_conv, tower_conv1_2, tower_pool], 3)
return net
示例7: reduction_b
# 需要導入模塊: from tensorflow.contrib import slim [as 別名]
# 或者: from tensorflow.contrib.slim import max_pool2d [as 別名]
def reduction_b(net):
with tf.variable_scope('Branch_0'):
tower_conv = slim.conv2d(net, 256, 1, scope='Conv2d_0a_1x1')
tower_conv_1 = slim.conv2d(tower_conv, 384, 3, stride=2,
padding='VALID', scope='Conv2d_1a_3x3')
with tf.variable_scope('Branch_1'):
tower_conv1 = slim.conv2d(net, 256, 1, scope='Conv2d_0a_1x1')
tower_conv1_1 = slim.conv2d(tower_conv1, 256, 3, stride=2,
padding='VALID', scope='Conv2d_1a_3x3')
with tf.variable_scope('Branch_2'):
tower_conv2 = slim.conv2d(net, 256, 1, scope='Conv2d_0a_1x1')
tower_conv2_1 = slim.conv2d(tower_conv2, 256, 3,
scope='Conv2d_0b_3x3')
tower_conv2_2 = slim.conv2d(tower_conv2_1, 256, 3, stride=2,
padding='VALID', scope='Conv2d_1a_3x3')
with tf.variable_scope('Branch_3'):
tower_pool = slim.max_pool2d(net, 3, stride=2, padding='VALID',
scope='MaxPool_1a_3x3')
net = tf.concat([tower_conv_1, tower_conv1_1,
tower_conv2_2, tower_pool], 3)
return net
示例8: _build_network
# 需要導入模塊: from tensorflow.contrib import slim [as 別名]
# 或者: from tensorflow.contrib.slim import max_pool2d [as 別名]
def _build_network(self):
with slim.arg_scope([slim.conv2d],
activation_fn=tf.nn.relu,
weights_regularizer=slim.l2_regularizer(self.weight_decay),
weights_initializer= self.weights_initializer,
biases_initializer = self.biases_initializer):
with slim.arg_scope([slim.conv2d, slim.max_pool2d],
padding='SAME',
data_format = self.data_format):
with tf.variable_scope(self.basenet_type):
basenet, end_points = net_factory.get_basenet(self.basenet_type, self.inputs);
with tf.variable_scope('extra_layers'):
self.net, self.end_points = self._add_extra_layers(basenet, end_points);
with tf.variable_scope('seglink_layers'):
self._add_seglink_layers();
示例9: _image_to_head
# 需要導入模塊: from tensorflow.contrib import slim [as 別名]
# 或者: from tensorflow.contrib.slim import max_pool2d [as 別名]
def _image_to_head(self, is_training, reuse=None):
with tf.variable_scope(self._scope, self._scope, reuse=reuse):
net = slim.repeat(self._image, 2, slim.conv2d, 64, [3, 3],
trainable=False, scope='conv1')
net = slim.max_pool2d(net, [2, 2], padding='SAME', scope='pool1')
net = slim.repeat(net, 2, slim.conv2d, 128, [3, 3],
trainable=False, scope='conv2')
net = slim.max_pool2d(net, [2, 2], padding='SAME', scope='pool2')
net = slim.repeat(net, 3, slim.conv2d, 256, [3, 3],
trainable=is_training, scope='conv3')
net = slim.max_pool2d(net, [2, 2], padding='SAME', scope='pool3')
net = slim.repeat(net, 3, slim.conv2d, 512, [3, 3],
trainable=is_training, scope='conv4')
self.end_points['conv4_3'] = net
net = slim.max_pool2d(net, [2, 2], padding='SAME', scope='pool4')
net = slim.repeat(net, 3, slim.conv2d, 512, [3, 3],
trainable=is_training, scope='conv5')
self.end_points['conv5_3'] = net
self._act_summaries.append(net)
self._layers['head'] = net
示例10: _image_to_head
# 需要導入模塊: from tensorflow.contrib import slim [as 別名]
# 或者: from tensorflow.contrib.slim import max_pool2d [as 別名]
def _image_to_head(self, is_training, reuse=None):
with slim.arg_scope(self._arg_scope(is_training, reuse)):
net = slim.conv2d(self._image, 96, [3, 3], stride=1, scope='conv1')
net = slim.max_pool2d(net, [2, 2], stride=2, scope='maxpool1')
net = self.fire_module(net, 16, 64, scope='fire2')
net = self.fire_module(net, 16, 64, scope='fire3')
net = self.fire_module(net, 32, 128, scope='fire4')
net = slim.max_pool2d(net, [2, 2], stride=2, scope='maxpool4')
net = self.fire_module(net, 32, 128, scope='fire5')
net = self.fire_module(net, 48, 192, scope='fire6')
net = self.fire_module(net, 48, 192, scope='fire7')
net = self.fire_module(net, 64, 256, scope='fire8')
net = slim.max_pool2d(net, [2, 2], stride=2, scope='maxpool8', padding='SAME')
net = self.fire_module(net, 64, 256, scope='fire9')
net = slim.max_pool2d(net, [2, 2], stride=2, scope='maxpool9', padding='SAME')
net = self.fire_module(net, 64, 512, scope='fire10')
self._act_summaries.append(net)
self._layers['head'] = net
return net
示例11: _image_to_head
# 需要導入模塊: from tensorflow.contrib import slim [as 別名]
# 或者: from tensorflow.contrib.slim import max_pool2d [as 別名]
def _image_to_head(self, is_training, reuse=None):
with tf.variable_scope(self._scope, self._scope, reuse=reuse):
net = slim.repeat(self._image, 2, slim.conv2d, 64, [3, 3],
trainable=True, scope='conv1')
net = slim.max_pool2d(net, [2, 2], padding='SAME', scope='pool1')
net = slim.repeat(net, 2, slim.conv2d, 128, [3, 3],
trainable=True, scope='conv2')
net = slim.max_pool2d(net, [2, 2], padding='SAME', scope='pool2')
net = slim.repeat(net, 3, slim.conv2d, 256, [3, 3],
trainable=True, scope='conv3')
net = slim.max_pool2d(net, [2, 2], padding='SAME', scope='pool3')
net = slim.repeat(net, 3, slim.conv2d, 512, [3, 3],
trainable=True, scope='conv4')
net = slim.max_pool2d(net, [2, 2], padding='SAME', scope='pool4')
net = slim.repeat(net, 3, slim.conv2d, 512, [3, 3],
trainable=True, scope='conv5')
self._act_summaries.append(net)
self._layers['head'] = net
return net
示例12: stem_stack_3x3
# 需要導入模塊: from tensorflow.contrib import slim [as 別名]
# 或者: from tensorflow.contrib.slim import max_pool2d [as 別名]
def stem_stack_3x3(net, input_channel=32, scope="C1"):
with tf.variable_scope(scope):
net = tf.pad(net, paddings=[[0, 0], [1, 1], [1, 1], [0, 0]])
net = slim.conv2d(net, num_outputs=input_channel, kernel_size=[3, 3], stride=2,
padding="VALID", biases_initializer=None, data_format=DATA_FORMAT,
scope='conv0')
net = tf.pad(net, paddings=[[0, 0], [1, 1], [1, 1], [0, 0]])
net = slim.conv2d(net, num_outputs=input_channel, kernel_size=[3, 3], stride=1,
padding="VALID", biases_initializer=None, data_format=DATA_FORMAT,
scope='conv1')
net = tf.pad(net, paddings=[[0, 0], [1, 1], [1, 1], [0, 0]])
net = slim.conv2d(net, num_outputs=input_channel*2, kernel_size=[3, 3], stride=1,
padding="VALID", biases_initializer=None, data_format=DATA_FORMAT,
scope='conv2')
net = tf.pad(net, paddings=[[0, 0], [1, 1], [1, 1], [0, 0]])
net = slim.max_pool2d(net, kernel_size=[3, 3], stride=2, padding="VALID", data_format=DATA_FORMAT)
return net
示例13: _crop_pool_layer
# 需要導入模塊: from tensorflow.contrib import slim [as 別名]
# 或者: from tensorflow.contrib.slim import max_pool2d [as 別名]
def _crop_pool_layer(self, bottom, rois, name):
with tf.variable_scope(name) as scope:
batch_ids = tf.squeeze(tf.slice(rois, [0, 0], [-1, 1], name="batch_id"), [1])
# Get the normalized coordinates of bounding boxes
bottom_shape = tf.shape(bottom)
height = (tf.to_float(bottom_shape[1]) - 1.) * np.float32(self._feat_stride[0])
width = (tf.to_float(bottom_shape[2]) - 1.) * np.float32(self._feat_stride[0])
x1 = tf.slice(rois, [0, 1], [-1, 1], name="x1") / width
y1 = tf.slice(rois, [0, 2], [-1, 1], name="y1") / height
x2 = tf.slice(rois, [0, 3], [-1, 1], name="x2") / width
y2 = tf.slice(rois, [0, 4], [-1, 1], name="y2") / height
# Won't be back-propagated to rois anyway, but to save time
bboxes = tf.stop_gradient(tf.concat([y1, x1, y2, x2], axis=1))
pre_pool_size = cfg.POOLING_SIZE * 2
crops = tf.image.crop_and_resize(bottom, bboxes, tf.to_int32(batch_ids),
[pre_pool_size, pre_pool_size],
name="crops")
# slim.max_pool2d has stride 2 in default
return slim.max_pool2d(crops, [2, 2], padding='SAME')
示例14: _image_to_head
# 需要導入模塊: from tensorflow.contrib import slim [as 別名]
# 或者: from tensorflow.contrib.slim import max_pool2d [as 別名]
def _image_to_head(self, is_training, reuse=None):
with tf.variable_scope(self._vgg_scope, self._vgg_scope, reuse=reuse):
net = slim.repeat(self._image, 2, slim.conv2d, 64, [3, 3],
trainable=False, scope='conv1')
net = slim.max_pool2d(net, [2, 2], padding='SAME', scope='pool1')
net = slim.repeat(net, 2, slim.conv2d, 128, [3, 3],
trainable=False, scope='conv2')
net = slim.max_pool2d(net, [2, 2], padding='SAME', scope='pool2')
net = slim.repeat(net, 3, slim.conv2d, 256, [3, 3],
trainable=is_training, scope='conv3')
net = slim.max_pool2d(net, [2, 2], padding='SAME', scope='pool3')
net = slim.repeat(net, 3, slim.conv2d, 512, [3, 3],
trainable=is_training, scope='conv4')
net = slim.max_pool2d(net, [2, 2], padding='SAME', scope='pool4')
net = slim.repeat(net, 3, slim.conv2d, 512, [3, 3],
trainable=is_training, scope='conv5')
self._act_summaries.append(net)
self._layers['head'] = net
return net
示例15: _crop_pool_layer
# 需要導入模塊: from tensorflow.contrib import slim [as 別名]
# 或者: from tensorflow.contrib.slim import max_pool2d [as 別名]
def _crop_pool_layer(self, bottom, rois, name):
with tf.variable_scope(name) as scope:
batch_ids = tf.squeeze(tf.slice(rois, [0, 0], [-1, 1], name="batch_id"), [1])
# Get the normalized coordinates of bboxes
bottom_shape = tf.shape(bottom)
height = (tf.to_float(bottom_shape[1]) - 1.) * np.float32(self._feat_stride[0])
width = (tf.to_float(bottom_shape[2]) - 1.) * np.float32(self._feat_stride[0])
x1 = tf.slice(rois, [0, 1], [-1, 1], name="x1") / width
y1 = tf.slice(rois, [0, 2], [-1, 1], name="y1") / height
x2 = tf.slice(rois, [0, 3], [-1, 1], name="x2") / width
y2 = tf.slice(rois, [0, 4], [-1, 1], name="y2") / height #revised
# Won't be backpropagated to rois anyway, but to save time
bboxes = tf.stop_gradient(tf.concat(1,[y1, x1, y2, x2]))
pre_pool_size = cfg.POOLING_SIZE * 2
crops = tf.image.crop_and_resize(bottom, bboxes, tf.to_int32(batch_ids), [pre_pool_size, pre_pool_size], name="crops")
return slim.max_pool2d(crops, [2, 2], padding='SAME')