當前位置: 首頁>>代碼示例>>Python>>正文


Python slim.max_pool2d方法代碼示例

本文整理匯總了Python中tensorflow.contrib.slim.max_pool2d方法的典型用法代碼示例。如果您正苦於以下問題:Python slim.max_pool2d方法的具體用法?Python slim.max_pool2d怎麽用?Python slim.max_pool2d使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.contrib.slim的用法示例。


在下文中一共展示了slim.max_pool2d方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: max_pool_views

# 需要導入模塊: from tensorflow.contrib import slim [as 別名]
# 或者: from tensorflow.contrib.slim import max_pool2d [as 別名]
def max_pool_views(self, nets_list):
    """Max pool across all nets in spatial dimensions.

    Args:
      nets_list: A list of 4D tensors with identical size.

    Returns:
      A tensor with the same size as any input tensors.
    """
    batch_size, height, width, num_features = [
        d.value for d in nets_list[0].get_shape().dims
    ]
    xy_flat_shape = (batch_size, 1, height * width, num_features)
    nets_for_merge = []
    with tf.variable_scope('max_pool_views', values=nets_list):
      for net in nets_list:
        nets_for_merge.append(tf.reshape(net, xy_flat_shape))
      merged_net = tf.concat(nets_for_merge, 1)
      net = slim.max_pool2d(
          merged_net, kernel_size=[len(nets_list), 1], stride=1)
      net = tf.reshape(net, (batch_size, height, width, num_features))
    return net 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:24,代碼來源:model.py

示例2: AddMaxPool

# 需要導入模塊: from tensorflow.contrib import slim [as 別名]
# 或者: from tensorflow.contrib.slim import max_pool2d [as 別名]
def AddMaxPool(self, prev_layer, index):
    """Add a maxpool layer.

    Args:
      prev_layer: Input tensor.
      index:      Position in model_str to start parsing

    Returns:
      Output tensor, end index in model_str.
    """
    pattern = re.compile(R'(Mp)({\w+})?(\d+),(\d+)(?:,(\d+),(\d+))?')
    m = pattern.match(self.model_str, index)
    if m is None:
      return None, None
    name = self._GetLayerName(m.group(0), index, m.group(2))
    height = int(m.group(3))
    width = int(m.group(4))
    y_stride = height if m.group(5) is None else m.group(5)
    x_stride = width if m.group(6) is None else m.group(6)
    self.reduction_factors[1] *= y_stride
    self.reduction_factors[2] *= x_stride
    return slim.max_pool2d(
        prev_layer, [height, width], [y_stride, x_stride],
        padding='SAME',
        scope=name), m.end() 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:27,代碼來源:vgslspecs.py

示例3: E

# 需要導入模塊: from tensorflow.contrib import slim [as 別名]
# 或者: from tensorflow.contrib.slim import max_pool2d [as 別名]
def E(self, images, is_training = False, reuse=False):
	
	if images.get_shape()[3] == 3:
	    images = tf.image.rgb_to_grayscale(images)
	
	with tf.variable_scope('encoder',reuse=reuse):
	    with slim.arg_scope([slim.fully_connected], activation_fn=tf.nn.relu):
		with slim.arg_scope([slim.conv2d], activation_fn=tf.nn.relu, padding='VALID'):
		    net = slim.conv2d(images, 64, 5, scope='conv1')
		    net = slim.max_pool2d(net, 2, stride=2, scope='pool1')
		    net = slim.conv2d(net, 128, 5, scope='conv2')
		    net = slim.max_pool2d(net, 2, stride=2, scope='pool2')
		    net = tf.contrib.layers.flatten(net)
		    net = slim.fully_connected(net, 1024, activation_fn=tf.nn.relu, scope='fc3')
		    net = slim.dropout(net, 0.5, is_training=is_training)
		    net = slim.fully_connected(net, self.hidden_repr_size, activation_fn=tf.tanh,scope='fc4')
		    # dropout here or not?
		    #~ net = slim.dropout(net, 0.5, is_training=is_training)
		    return net 
開發者ID:pmorerio,項目名稱:minimal-entropy-correlation-alignment,代碼行數:21,代碼來源:model.py

示例4: _extra_conv_arg_scope_with_bn

# 需要導入模塊: from tensorflow.contrib import slim [as 別名]
# 或者: from tensorflow.contrib.slim import max_pool2d [as 別名]
def _extra_conv_arg_scope_with_bn(weight_decay=0.00001,
                     activation_fn=None,
                     batch_norm_decay=0.997,
                     batch_norm_epsilon=1e-5,
                     batch_norm_scale=True):

  batch_norm_params = {
      'decay': batch_norm_decay,
      'epsilon': batch_norm_epsilon,
      'scale': batch_norm_scale,
      'updates_collections': tf.GraphKeys.UPDATE_OPS,
  }

  with slim.arg_scope(
      [slim.conv2d],
      weights_regularizer=slim.l2_regularizer(weight_decay),
      weights_initializer=slim.variance_scaling_initializer(),
      activation_fn=tf.nn.relu,
      normalizer_fn=slim.batch_norm,
      normalizer_params=batch_norm_params):
    with slim.arg_scope([slim.batch_norm], **batch_norm_params):
      with slim.arg_scope([slim.max_pool2d], padding='SAME') as arg_sc:
        return arg_sc 
開發者ID:CharlesShang,項目名稱:FastMaskRCNN,代碼行數:25,代碼來源:pyramid_network.py

示例5: subsample

# 需要導入模塊: from tensorflow.contrib import slim [as 別名]
# 或者: from tensorflow.contrib.slim import max_pool2d [as 別名]
def subsample(inputs, factor, scope=None):
  """Subsamples the input along the spatial dimensions.

  Args:
    inputs: A `Tensor` of size [batch, height_in, width_in, channels].
    factor: The subsampling factor.
    scope: Optional variable_scope.

  Returns:
    output: A `Tensor` of size [batch, height_out, width_out, channels] with the
      input, either intact (if factor == 1) or subsampled (if factor > 1).
  """
  if factor == 1:
    return inputs
  else:
    return slim.max_pool2d(inputs, [1, 1], stride=factor, scope=scope) 
開發者ID:CharlesShang,項目名稱:FastMaskRCNN,代碼行數:18,代碼來源:resnet_utils.py

示例6: reduction_a

# 需要導入模塊: from tensorflow.contrib import slim [as 別名]
# 或者: from tensorflow.contrib.slim import max_pool2d [as 別名]
def reduction_a(net, k, l, m, n):
    with tf.variable_scope('Branch_0'):
        tower_conv = slim.conv2d(net, n, 3, stride=2, padding='VALID',
                                 scope='Conv2d_1a_3x3')
    with tf.variable_scope('Branch_1'):
        tower_conv1_0 = slim.conv2d(net, k, 1, scope='Conv2d_0a_1x1')
        tower_conv1_1 = slim.conv2d(tower_conv1_0, l, 3,
                                    scope='Conv2d_0b_3x3')
        tower_conv1_2 = slim.conv2d(tower_conv1_1, m, 3,
                                    stride=2, padding='VALID',
                                    scope='Conv2d_1a_3x3')
    with tf.variable_scope('Branch_2'):
        tower_pool = slim.max_pool2d(net, 3, stride=2, padding='VALID',
                                     scope='MaxPool_1a_3x3')
    net = tf.concat([tower_conv, tower_conv1_2, tower_pool], 3)
    return net 
開發者ID:GaoangW,項目名稱:TNT,代碼行數:18,代碼來源:inception_resnet_v1.py

示例7: reduction_b

# 需要導入模塊: from tensorflow.contrib import slim [as 別名]
# 或者: from tensorflow.contrib.slim import max_pool2d [as 別名]
def reduction_b(net):
    with tf.variable_scope('Branch_0'):
        tower_conv = slim.conv2d(net, 256, 1, scope='Conv2d_0a_1x1')
        tower_conv_1 = slim.conv2d(tower_conv, 384, 3, stride=2,
                                   padding='VALID', scope='Conv2d_1a_3x3')
    with tf.variable_scope('Branch_1'):
        tower_conv1 = slim.conv2d(net, 256, 1, scope='Conv2d_0a_1x1')
        tower_conv1_1 = slim.conv2d(tower_conv1, 256, 3, stride=2,
                                    padding='VALID', scope='Conv2d_1a_3x3')
    with tf.variable_scope('Branch_2'):
        tower_conv2 = slim.conv2d(net, 256, 1, scope='Conv2d_0a_1x1')
        tower_conv2_1 = slim.conv2d(tower_conv2, 256, 3,
                                    scope='Conv2d_0b_3x3')
        tower_conv2_2 = slim.conv2d(tower_conv2_1, 256, 3, stride=2,
                                    padding='VALID', scope='Conv2d_1a_3x3')
    with tf.variable_scope('Branch_3'):
        tower_pool = slim.max_pool2d(net, 3, stride=2, padding='VALID',
                                     scope='MaxPool_1a_3x3')
    net = tf.concat([tower_conv_1, tower_conv1_1,
                        tower_conv2_2, tower_pool], 3)
    return net 
開發者ID:GaoangW,項目名稱:TNT,代碼行數:23,代碼來源:inception_resnet_v1.py

示例8: _build_network

# 需要導入模塊: from tensorflow.contrib import slim [as 別名]
# 或者: from tensorflow.contrib.slim import max_pool2d [as 別名]
def _build_network(self):
            
        with slim.arg_scope([slim.conv2d],
                        activation_fn=tf.nn.relu,
                        weights_regularizer=slim.l2_regularizer(self.weight_decay),
                        weights_initializer= self.weights_initializer,
                        biases_initializer = self.biases_initializer):
            with slim.arg_scope([slim.conv2d, slim.max_pool2d],
                                padding='SAME',
                                data_format = self.data_format):
                with tf.variable_scope(self.basenet_type):
                    basenet, end_points = net_factory.get_basenet(self.basenet_type, self.inputs);
                    
                with tf.variable_scope('extra_layers'):
                    self.net, self.end_points = self._add_extra_layers(basenet, end_points);
                
                with tf.variable_scope('seglink_layers'):
                    self._add_seglink_layers(); 
開發者ID:dengdan,項目名稱:seglink,代碼行數:20,代碼來源:seglink_symbol.py

示例9: _image_to_head

# 需要導入模塊: from tensorflow.contrib import slim [as 別名]
# 或者: from tensorflow.contrib.slim import max_pool2d [as 別名]
def _image_to_head(self, is_training, reuse=None):
        with tf.variable_scope(self._scope, self._scope, reuse=reuse):
            net = slim.repeat(self._image, 2, slim.conv2d, 64, [3, 3],
                              trainable=False, scope='conv1')
            net = slim.max_pool2d(net, [2, 2], padding='SAME', scope='pool1')
            net = slim.repeat(net, 2, slim.conv2d, 128, [3, 3],
                              trainable=False, scope='conv2')
            net = slim.max_pool2d(net, [2, 2], padding='SAME', scope='pool2')
            net = slim.repeat(net, 3, slim.conv2d, 256, [3, 3],
                              trainable=is_training, scope='conv3')
            net = slim.max_pool2d(net, [2, 2], padding='SAME', scope='pool3')

            net = slim.repeat(net, 3, slim.conv2d, 512, [3, 3],
                              trainable=is_training, scope='conv4')
            self.end_points['conv4_3'] = net
            net = slim.max_pool2d(net, [2, 2], padding='SAME', scope='pool4')
            net = slim.repeat(net, 3, slim.conv2d, 512, [3, 3],
                              trainable=is_training, scope='conv5')
            self.end_points['conv5_3'] = net
        self._act_summaries.append(net)
        self._layers['head'] = net 
開發者ID:wanjinchang,項目名稱:SSH-TensorFlow,代碼行數:23,代碼來源:vgg16.py

示例10: _image_to_head

# 需要導入模塊: from tensorflow.contrib import slim [as 別名]
# 或者: from tensorflow.contrib.slim import max_pool2d [as 別名]
def _image_to_head(self, is_training, reuse=None):
        with slim.arg_scope(self._arg_scope(is_training, reuse)):
            net = slim.conv2d(self._image, 96, [3, 3], stride=1, scope='conv1')
            net = slim.max_pool2d(net, [2, 2], stride=2, scope='maxpool1')
            net = self.fire_module(net, 16, 64, scope='fire2')
            net = self.fire_module(net, 16, 64, scope='fire3')
            net = self.fire_module(net, 32, 128, scope='fire4')
            net = slim.max_pool2d(net, [2, 2], stride=2, scope='maxpool4')
            net = self.fire_module(net, 32, 128, scope='fire5')
            net = self.fire_module(net, 48, 192, scope='fire6')
            net = self.fire_module(net, 48, 192, scope='fire7')
            net = self.fire_module(net, 64, 256, scope='fire8')
            net = slim.max_pool2d(net, [2, 2], stride=2, scope='maxpool8', padding='SAME')
            net = self.fire_module(net, 64, 256, scope='fire9')
            net = slim.max_pool2d(net, [2, 2], stride=2, scope='maxpool9', padding='SAME')
            net = self.fire_module(net, 64, 512, scope='fire10')

        self._act_summaries.append(net)
        self._layers['head'] = net

        return net 
開發者ID:Sanster,項目名稱:tf_ctpn,代碼行數:23,代碼來源:squeezenet.py

示例11: _image_to_head

# 需要導入模塊: from tensorflow.contrib import slim [as 別名]
# 或者: from tensorflow.contrib.slim import max_pool2d [as 別名]
def _image_to_head(self, is_training, reuse=None):
        with tf.variable_scope(self._scope, self._scope, reuse=reuse):
            net = slim.repeat(self._image, 2, slim.conv2d, 64, [3, 3],
                              trainable=True, scope='conv1')
            net = slim.max_pool2d(net, [2, 2], padding='SAME', scope='pool1')
            net = slim.repeat(net, 2, slim.conv2d, 128, [3, 3],
                              trainable=True, scope='conv2')
            net = slim.max_pool2d(net, [2, 2], padding='SAME', scope='pool2')
            net = slim.repeat(net, 3, slim.conv2d, 256, [3, 3],
                              trainable=True, scope='conv3')
            net = slim.max_pool2d(net, [2, 2], padding='SAME', scope='pool3')
            net = slim.repeat(net, 3, slim.conv2d, 512, [3, 3],
                              trainable=True, scope='conv4')
            net = slim.max_pool2d(net, [2, 2], padding='SAME', scope='pool4')
            net = slim.repeat(net, 3, slim.conv2d, 512, [3, 3],
                              trainable=True, scope='conv5')

        self._act_summaries.append(net)
        self._layers['head'] = net

        return net 
開發者ID:Sanster,項目名稱:tf_ctpn,代碼行數:23,代碼來源:vgg16.py

示例12: stem_stack_3x3

# 需要導入模塊: from tensorflow.contrib import slim [as 別名]
# 或者: from tensorflow.contrib.slim import max_pool2d [as 別名]
def stem_stack_3x3(net, input_channel=32, scope="C1"):
    with tf.variable_scope(scope):
        net = tf.pad(net, paddings=[[0, 0], [1, 1], [1, 1], [0, 0]])
        net = slim.conv2d(net, num_outputs=input_channel, kernel_size=[3, 3], stride=2,
                          padding="VALID", biases_initializer=None, data_format=DATA_FORMAT,
                          scope='conv0')
        net = tf.pad(net, paddings=[[0, 0], [1, 1], [1, 1], [0, 0]])
        net = slim.conv2d(net, num_outputs=input_channel, kernel_size=[3, 3], stride=1,
                          padding="VALID", biases_initializer=None, data_format=DATA_FORMAT,
                          scope='conv1')
        net = tf.pad(net, paddings=[[0, 0], [1, 1], [1, 1], [0, 0]])
        net = slim.conv2d(net, num_outputs=input_channel*2, kernel_size=[3, 3], stride=1,
                          padding="VALID", biases_initializer=None, data_format=DATA_FORMAT,
                          scope='conv2')
        net = tf.pad(net, paddings=[[0, 0], [1, 1], [1, 1], [0, 0]])
        net = slim.max_pool2d(net, kernel_size=[3, 3], stride=2, padding="VALID", data_format=DATA_FORMAT)
        return net 
開發者ID:Thinklab-SJTU,項目名稱:R3Det_Tensorflow,代碼行數:19,代碼來源:resnet_gluoncv.py

示例13: _crop_pool_layer

# 需要導入模塊: from tensorflow.contrib import slim [as 別名]
# 或者: from tensorflow.contrib.slim import max_pool2d [as 別名]
def _crop_pool_layer(self, bottom, rois, name):
        with tf.variable_scope(name) as scope:
            batch_ids = tf.squeeze(tf.slice(rois, [0, 0], [-1, 1], name="batch_id"), [1])
            # Get the normalized coordinates of bounding boxes
            bottom_shape = tf.shape(bottom)
            height = (tf.to_float(bottom_shape[1]) - 1.) * np.float32(self._feat_stride[0])
            width = (tf.to_float(bottom_shape[2]) - 1.) * np.float32(self._feat_stride[0])
            x1 = tf.slice(rois, [0, 1], [-1, 1], name="x1") / width
            y1 = tf.slice(rois, [0, 2], [-1, 1], name="y1") / height
            x2 = tf.slice(rois, [0, 3], [-1, 1], name="x2") / width
            y2 = tf.slice(rois, [0, 4], [-1, 1], name="y2") / height
            # Won't be back-propagated to rois anyway, but to save time
            bboxes = tf.stop_gradient(tf.concat([y1, x1, y2, x2], axis=1))
            pre_pool_size = cfg.POOLING_SIZE * 2
            crops = tf.image.crop_and_resize(bottom, bboxes, tf.to_int32(batch_ids),
                                             [pre_pool_size, pre_pool_size],
                                             name="crops")

        # slim.max_pool2d has stride 2 in default
        return slim.max_pool2d(crops, [2, 2], padding='SAME') 
開發者ID:InnerPeace-Wu,項目名稱:densecap-tensorflow,代碼行數:22,代碼來源:network.py

示例14: _image_to_head

# 需要導入模塊: from tensorflow.contrib import slim [as 別名]
# 或者: from tensorflow.contrib.slim import max_pool2d [as 別名]
def _image_to_head(self, is_training, reuse=None):
        with tf.variable_scope(self._vgg_scope, self._vgg_scope, reuse=reuse):
            net = slim.repeat(self._image, 2, slim.conv2d, 64, [3, 3],
                              trainable=False, scope='conv1')
            net = slim.max_pool2d(net, [2, 2], padding='SAME', scope='pool1')
            net = slim.repeat(net, 2, slim.conv2d, 128, [3, 3],
                              trainable=False, scope='conv2')
            net = slim.max_pool2d(net, [2, 2], padding='SAME', scope='pool2')
            net = slim.repeat(net, 3, slim.conv2d, 256, [3, 3],
                              trainable=is_training, scope='conv3')
            net = slim.max_pool2d(net, [2, 2], padding='SAME', scope='pool3')
            net = slim.repeat(net, 3, slim.conv2d, 512, [3, 3],
                              trainable=is_training, scope='conv4')
            net = slim.max_pool2d(net, [2, 2], padding='SAME', scope='pool4')
            net = slim.repeat(net, 3, slim.conv2d, 512, [3, 3],
                              trainable=is_training, scope='conv5')

        self._act_summaries.append(net)
        self._layers['head'] = net

        return net 
開發者ID:InnerPeace-Wu,項目名稱:densecap-tensorflow,代碼行數:23,代碼來源:vgg16.py

示例15: _crop_pool_layer

# 需要導入模塊: from tensorflow.contrib import slim [as 別名]
# 或者: from tensorflow.contrib.slim import max_pool2d [as 別名]
def _crop_pool_layer(self, bottom, rois, name):
    with tf.variable_scope(name) as scope:
      batch_ids = tf.squeeze(tf.slice(rois, [0, 0], [-1, 1], name="batch_id"), [1])
      # Get the normalized coordinates of bboxes
      bottom_shape = tf.shape(bottom)
      height = (tf.to_float(bottom_shape[1]) - 1.) * np.float32(self._feat_stride[0])
      width = (tf.to_float(bottom_shape[2]) - 1.) * np.float32(self._feat_stride[0])
      x1 = tf.slice(rois, [0, 1], [-1, 1], name="x1") / width
      y1 = tf.slice(rois, [0, 2], [-1, 1], name="y1") / height
      x2 = tf.slice(rois, [0, 3], [-1, 1], name="x2") / width
      y2 = tf.slice(rois, [0, 4], [-1, 1], name="y2") / height  #revised
      # Won't be backpropagated to rois anyway, but to save time
      bboxes = tf.stop_gradient(tf.concat(1,[y1, x1, y2, x2]))
      pre_pool_size = cfg.POOLING_SIZE * 2
      crops = tf.image.crop_and_resize(bottom, bboxes, tf.to_int32(batch_ids), [pre_pool_size, pre_pool_size], name="crops")

    return slim.max_pool2d(crops, [2, 2], padding='SAME') 
開發者ID:pengzhou1108,項目名稱:RGB-N,代碼行數:19,代碼來源:network_fusion.py


注:本文中的tensorflow.contrib.slim.max_pool2d方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。