當前位置: 首頁>>代碼示例>>Python>>正文


Python slim.l2_regularizer方法代碼示例

本文整理匯總了Python中tensorflow.contrib.slim.l2_regularizer方法的典型用法代碼示例。如果您正苦於以下問題:Python slim.l2_regularizer方法的具體用法?Python slim.l2_regularizer怎麽用?Python slim.l2_regularizer使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.contrib.slim的用法示例。


在下文中一共展示了slim.l2_regularizer方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _extra_conv_arg_scope_with_bn

# 需要導入模塊: from tensorflow.contrib import slim [as 別名]
# 或者: from tensorflow.contrib.slim import l2_regularizer [as 別名]
def _extra_conv_arg_scope_with_bn(weight_decay=0.00001,
                     activation_fn=None,
                     batch_norm_decay=0.997,
                     batch_norm_epsilon=1e-5,
                     batch_norm_scale=True):

  batch_norm_params = {
      'decay': batch_norm_decay,
      'epsilon': batch_norm_epsilon,
      'scale': batch_norm_scale,
      'updates_collections': tf.GraphKeys.UPDATE_OPS,
  }

  with slim.arg_scope(
      [slim.conv2d],
      weights_regularizer=slim.l2_regularizer(weight_decay),
      weights_initializer=slim.variance_scaling_initializer(),
      activation_fn=tf.nn.relu,
      normalizer_fn=slim.batch_norm,
      normalizer_params=batch_norm_params):
    with slim.arg_scope([slim.batch_norm], **batch_norm_params):
      with slim.arg_scope([slim.max_pool2d], padding='SAME') as arg_sc:
        return arg_sc 
開發者ID:CharlesShang,項目名稱:FastMaskRCNN,代碼行數:25,代碼來源:pyramid_network.py

示例2: _extra_conv_arg_scope

# 需要導入模塊: from tensorflow.contrib import slim [as 別名]
# 或者: from tensorflow.contrib.slim import l2_regularizer [as 別名]
def _extra_conv_arg_scope(weight_decay=0.00001, activation_fn=None, normalizer_fn=None):

  with slim.arg_scope(
      [slim.conv2d, slim.conv2d_transpose],
      padding='SAME',
      weights_regularizer=slim.l2_regularizer(weight_decay),
      weights_initializer=tf.truncated_normal_initializer(stddev=0.001),
      activation_fn=activation_fn,
      normalizer_fn=normalizer_fn,) as arg_sc:
    with slim.arg_scope(
      [slim.fully_connected],
          weights_regularizer=slim.l2_regularizer(weight_decay),
          weights_initializer=tf.truncated_normal_initializer(stddev=0.001),
          activation_fn=activation_fn,
          normalizer_fn=normalizer_fn) as arg_sc:
          return arg_sc 
開發者ID:CharlesShang,項目名稱:FastMaskRCNN,代碼行數:18,代碼來源:pyramid_network.py

示例3: inference

# 需要導入模塊: from tensorflow.contrib import slim [as 別名]
# 或者: from tensorflow.contrib.slim import l2_regularizer [as 別名]
def inference(images, keep_probability, phase_train=True, 
              bottleneck_layer_size=128, weight_decay=0.0, reuse=None):
    batch_norm_params = {
        # Decay for the moving averages.
        'decay': 0.995,
        # epsilon to prevent 0s in variance.
        'epsilon': 0.001,
        # force in-place updates of mean and variance estimates
        'updates_collections': None,
        # Moving averages ends up in the trainable variables collection
        'variables_collections': [ tf.GraphKeys.TRAINABLE_VARIABLES ],
}
    with slim.arg_scope([slim.conv2d, slim.fully_connected],
                        weights_initializer=slim.initializers.xavier_initializer(), 
                        weights_regularizer=slim.l2_regularizer(weight_decay),
                        normalizer_fn=slim.batch_norm,
                        normalizer_params=batch_norm_params):
        return inception_resnet_v2(images, is_training=phase_train,
              dropout_keep_prob=keep_probability, bottleneck_layer_size=bottleneck_layer_size, reuse=reuse) 
開發者ID:GaoangW,項目名稱:TNT,代碼行數:21,代碼來源:inception_resnet_v2.py

示例4: inference

# 需要導入模塊: from tensorflow.contrib import slim [as 別名]
# 或者: from tensorflow.contrib.slim import l2_regularizer [as 別名]
def inference(images, keep_probability, phase_train=True,  # @UnusedVariable
              bottleneck_layer_size=128, bottleneck_layer_activation=None, weight_decay=0.0, reuse=None):  # @UnusedVariable
    batch_norm_params = {
        # Decay for the moving averages.
        'decay': 0.995,
        # epsilon to prevent 0s in variance.
        'epsilon': 0.001,
        # force in-place updates of mean and variance estimates
        'updates_collections': None,
        # Moving averages ends up in the trainable variables collection
        'variables_collections': [ tf.GraphKeys.TRAINABLE_VARIABLES ],
    }
    
    with slim.arg_scope([slim.conv2d, slim.fully_connected],
                        weights_initializer=tf.truncated_normal_initializer(stddev=0.1),
                        weights_regularizer=slim.l2_regularizer(weight_decay),
                        normalizer_fn=slim.batch_norm,
                        normalizer_params=batch_norm_params):
        size = np.prod(images.get_shape()[1:].as_list())
        net = slim.fully_connected(tf.reshape(images, (-1,size)), bottleneck_layer_size, activation_fn=None, 
                scope='Bottleneck', reuse=False)
        return net, None 
開發者ID:GaoangW,項目名稱:TNT,代碼行數:24,代碼來源:dummy.py

示例5: inference

# 需要導入模塊: from tensorflow.contrib import slim [as 別名]
# 或者: from tensorflow.contrib.slim import l2_regularizer [as 別名]
def inference(images, keep_probability, phase_train=True, 
              bottleneck_layer_size=128, weight_decay=0.0, reuse=None):
    batch_norm_params = {
        # Decay for the moving averages.
        'decay': 0.995,
        # epsilon to prevent 0s in variance.
        'epsilon': 0.001,
        # force in-place updates of mean and variance estimates
        'updates_collections': None,
        # Moving averages ends up in the trainable variables collection
        'variables_collections': [ tf.GraphKeys.TRAINABLE_VARIABLES ],
    }
    
    with slim.arg_scope([slim.conv2d, slim.fully_connected],
                        weights_initializer=slim.initializers.xavier_initializer(), 
                        weights_regularizer=slim.l2_regularizer(weight_decay),
                        normalizer_fn=slim.batch_norm,
                        normalizer_params=batch_norm_params):
        return inception_resnet_v1(images, is_training=phase_train,
              dropout_keep_prob=keep_probability, bottleneck_layer_size=bottleneck_layer_size, reuse=reuse) 
開發者ID:GaoangW,項目名稱:TNT,代碼行數:22,代碼來源:inception_resnet_v1.py

示例6: encoder

# 需要導入模塊: from tensorflow.contrib import slim [as 別名]
# 或者: from tensorflow.contrib.slim import l2_regularizer [as 別名]
def encoder(self, images, is_training):
        activation_fn = leaky_relu  # tf.nn.relu
        weight_decay = 0.0
        with tf.variable_scope('encoder'):
            with slim.arg_scope([slim.batch_norm],
                                is_training=is_training):
                with slim.arg_scope([slim.conv2d, slim.fully_connected],
                                    weights_initializer=tf.truncated_normal_initializer(stddev=0.1),
                                    weights_regularizer=slim.l2_regularizer(weight_decay),
                                    normalizer_fn=slim.batch_norm,
                                    normalizer_params=self.batch_norm_params):
                    net = slim.conv2d(images, 32, [4, 4], 2, activation_fn=activation_fn, scope='Conv2d_1')
                    net = slim.conv2d(net, 64, [4, 4], 2, activation_fn=activation_fn, scope='Conv2d_2')
                    net = slim.conv2d(net, 128, [4, 4], 2, activation_fn=activation_fn, scope='Conv2d_3')
                    net = slim.conv2d(net, 256, [4, 4], 2, activation_fn=activation_fn, scope='Conv2d_4')
                    net = slim.conv2d(net, 512, [4, 4], 2, activation_fn=activation_fn, scope='Conv2d_5')
                    net = slim.flatten(net)
                    fc1 = slim.fully_connected(net, self.latent_variable_dim, activation_fn=None, normalizer_fn=None, scope='Fc_1')
                    fc2 = slim.fully_connected(net, self.latent_variable_dim, activation_fn=None, normalizer_fn=None, scope='Fc_2')
        return fc1, fc2 
開發者ID:GaoangW,項目名稱:TNT,代碼行數:22,代碼來源:dfc_vae_large.py

示例7: encoder

# 需要導入模塊: from tensorflow.contrib import slim [as 別名]
# 或者: from tensorflow.contrib.slim import l2_regularizer [as 別名]
def encoder(self, images, is_training):
        activation_fn = leaky_relu  # tf.nn.relu
        weight_decay = 0.0
        with tf.variable_scope('encoder'):
            with slim.arg_scope([slim.batch_norm],
                                is_training=is_training):
                with slim.arg_scope([slim.conv2d, slim.fully_connected],
                                    weights_initializer=tf.truncated_normal_initializer(stddev=0.1),
                                    weights_regularizer=slim.l2_regularizer(weight_decay),
                                    normalizer_fn=slim.batch_norm,
                                    normalizer_params=self.batch_norm_params):
                    net = slim.conv2d(images, 32, [4, 4], 2, activation_fn=activation_fn, scope='Conv2d_1')
                    net = slim.conv2d(net, 64, [4, 4], 2, activation_fn=activation_fn, scope='Conv2d_2')
                    net = slim.conv2d(net, 128, [4, 4], 2, activation_fn=activation_fn, scope='Conv2d_3')
                    net = slim.conv2d(net, 256, [4, 4], 2, activation_fn=activation_fn, scope='Conv2d_4')
                    net = slim.flatten(net)
                    fc1 = slim.fully_connected(net, self.latent_variable_dim, activation_fn=None, normalizer_fn=None, scope='Fc_1')
                    fc2 = slim.fully_connected(net, self.latent_variable_dim, activation_fn=None, normalizer_fn=None, scope='Fc_2')
        return fc1, fc2 
開發者ID:GaoangW,項目名稱:TNT,代碼行數:21,代碼來源:dfc_vae.py

示例8: _build_network

# 需要導入模塊: from tensorflow.contrib import slim [as 別名]
# 或者: from tensorflow.contrib.slim import l2_regularizer [as 別名]
def _build_network(self):
            
        with slim.arg_scope([slim.conv2d],
                        activation_fn=tf.nn.relu,
                        weights_regularizer=slim.l2_regularizer(self.weight_decay),
                        weights_initializer= self.weights_initializer,
                        biases_initializer = self.biases_initializer):
            with slim.arg_scope([slim.conv2d, slim.max_pool2d],
                                padding='SAME',
                                data_format = self.data_format):
                with tf.variable_scope(self.basenet_type):
                    basenet, end_points = net_factory.get_basenet(self.basenet_type, self.inputs);
                    
                with tf.variable_scope('extra_layers'):
                    self.net, self.end_points = self._add_extra_layers(basenet, end_points);
                
                with tf.variable_scope('seglink_layers'):
                    self._add_seglink_layers(); 
開發者ID:dengdan,項目名稱:seglink,代碼行數:20,代碼來源:seglink_symbol.py

示例9: resnet_arg_scope

# 需要導入模塊: from tensorflow.contrib import slim [as 別名]
# 或者: from tensorflow.contrib.slim import l2_regularizer [as 別名]
def resnet_arg_scope(is_training=True,
                     batch_norm_decay=0.997,
                     batch_norm_epsilon=1e-5,
                     batch_norm_scale=True):
    batch_norm_params = {
        'is_training': False,
        'decay': batch_norm_decay,
        'epsilon': batch_norm_epsilon,
        'scale': batch_norm_scale,
        'trainable': False,
        'updates_collections': tf.GraphKeys.UPDATE_OPS
    }

    with arg_scope(
            [slim.conv2d],
            weights_regularizer=slim.l2_regularizer(cfg.TRAIN.WEIGHT_DECAY),
            weights_initializer=slim.variance_scaling_initializer(),
            trainable=is_training,
            activation_fn=tf.nn.relu,
            normalizer_fn=slim.batch_norm,
            normalizer_params=batch_norm_params):
        with arg_scope([slim.batch_norm], **batch_norm_params) as arg_sc:
            return arg_sc 
開發者ID:wanjinchang,項目名稱:SSH-TensorFlow,代碼行數:25,代碼來源:resnet_v1.py

示例10: _arg_scope

# 需要導入模塊: from tensorflow.contrib import slim [as 別名]
# 或者: from tensorflow.contrib.slim import l2_regularizer [as 別名]
def _arg_scope(self, is_training, reuse=None):
        weight_decay = 0.0
        keep_probability = 1.0

        batch_norm_params = {
            'is_training': is_training,
            # Decay for the moving averages.
            'decay': 0.995,
            # epsilon to prevent 0s in variance.
            'epsilon': 0.001
        }

        with slim.arg_scope([slim.conv2d, slim.fully_connected],
                            weights_initializer=slim.xavier_initializer_conv2d(uniform=True),
                            weights_regularizer=slim.l2_regularizer(weight_decay),
                            normalizer_fn=slim.batch_norm,
                            normalizer_params=batch_norm_params):
            with tf.variable_scope(self._scope, self._scope, reuse=reuse):
                with slim.arg_scope([slim.batch_norm, slim.dropout],
                                    is_training=is_training) as sc:
                    return sc 
開發者ID:Sanster,項目名稱:tf_ctpn,代碼行數:23,代碼來源:squeezenet.py

示例11: conv3d

# 需要導入模塊: from tensorflow.contrib import slim [as 別名]
# 或者: from tensorflow.contrib.slim import l2_regularizer [as 別名]
def conv3d(
        input,
        output_chn,
        kernel_size,
        stride,
        use_bias=False,
        name='conv'):
    return tf.layers.conv3d(
        inputs=input,
        filters=output_chn,
        kernel_size=kernel_size,
        strides=stride,
        padding='same',
        data_format='channels_last',
        kernel_initializer=tf.truncated_normal_initializer(
            0.0,
            0.01),
        kernel_regularizer=slim.l2_regularizer(0.0005),
        use_bias=use_bias,
        name=name) 
開發者ID:JohnleeHIT,項目名稱:Brats2019,代碼行數:22,代碼來源:models.py

示例12: Unsample

# 需要導入模塊: from tensorflow.contrib import slim [as 別名]
# 或者: from tensorflow.contrib.slim import l2_regularizer [as 別名]
def Unsample(input, output_chn, name):
    batch, in_depth, in_height, in_width, in_channels = [
        int(d) for d in input.get_shape()]
    base = input.shape[-2]
    data = 96 / int(base)
    print("base shape", data)
    filter = tf.get_variable(
        name + "/filter",
        shape=[
            4,
            4,
            4,
            output_chn,
            in_channels],
        dtype=tf.float32,
        initializer=tf.random_normal_initializer(
            0,
            0.01),
        regularizer=slim.l2_regularizer(0.0005))

    conv = tf.nn.conv3d_transpose(
        value=input, filter=filter, output_shape=[
            batch, 96, 96, 96, output_chn], strides=[
            1, data, data, data, 1], padding="SAME", name=name)
    return conv 
開發者ID:JohnleeHIT,項目名稱:Brats2019,代碼行數:27,代碼來源:models.py

示例13: resnet_arg_scope

# 需要導入模塊: from tensorflow.contrib import slim [as 別名]
# 或者: from tensorflow.contrib.slim import l2_regularizer [as 別名]
def resnet_arg_scope(freeze_norm, is_training=True, weight_decay=0.0001,
                     batch_norm_decay=0.9, batch_norm_epsilon=1e-5, batch_norm_scale=True):

    batch_norm_params = {
        'is_training': False, 'decay': batch_norm_decay,
        'epsilon': batch_norm_epsilon, 'scale': batch_norm_scale,
        'trainable': False,
        'updates_collections': tf.GraphKeys.UPDATE_OPS,
        'data_format': DATA_FORMAT
    }
    with slim.arg_scope(
            [slim.conv2d],
            weights_regularizer=slim.l2_regularizer(weight_decay),
            weights_initializer=slim.variance_scaling_initializer(),
            trainable=is_training,
            activation_fn=tf.nn.relu,
            normalizer_fn=slim.batch_norm,
            normalizer_params=batch_norm_params):
        with slim.arg_scope([slim.batch_norm], **batch_norm_params) as arg_sc:
            return arg_sc 
開發者ID:Thinklab-SJTU,項目名稱:R3Det_Tensorflow,代碼行數:22,代碼來源:resnet_gluoncv.py

示例14: create_model

# 需要導入模塊: from tensorflow.contrib import slim [as 別名]
# 或者: from tensorflow.contrib.slim import l2_regularizer [as 別名]
def create_model(self, model_input, vocab_size, l2_penalty=1e-8, original_input=None, epsilon=1e-5, **unused_params):
    """Creates a non-unified matrix regression model.

    Args:
      model_input: 'batch' x 'num_features' x 'num_methods' matrix of input features.
      vocab_size: The number of classes in the dataset.

    Returns:
      A dictionary with a tensor containing the probability predictions of the
      model in the 'predictions' key. The dimensions of the tensor are
      batch_size x num_classes."""

    num_features = model_input.get_shape().as_list()[-2]
    num_methods = model_input.get_shape().as_list()[-1]

    log_model_input = tf.stop_gradient(tf.log((epsilon + model_input) / (1.0 + epsilon - model_input)))
    
    weight = tf.get_variable("ensemble_weight", 
        shape=[num_features, num_methods],
        regularizer=slim.l2_regularizer(l2_penalty))
    weight = tf.nn.softmax(weight)

    output = tf.nn.sigmoid(tf.einsum("ijk,jk->ij", log_model_input, weight))
    return {"predictions": output} 
開發者ID:wangheda,項目名稱:youtube-8m,代碼行數:26,代碼來源:nonunit_matrix_regression_model.py

示例15: create_model

# 需要導入模塊: from tensorflow.contrib import slim [as 別名]
# 或者: from tensorflow.contrib.slim import l2_regularizer [as 別名]
def create_model(self,
                   model_input,
                   vocab_size,
                   num_mixtures=None,
                   l2_penalty=1e-8,
                   sub_scope="",
                   original_input=None, 
                   **unused_params):

    num_methods = model_input.get_shape().as_list()[-1]
    num_features = model_input.get_shape().as_list()[-2]

    original_input = tf.nn.l2_normalize(original_input, dim=1)
    gate_activations = slim.fully_connected(
        original_input,
        num_methods,
        activation_fn=tf.nn.softmax,
        weights_regularizer=slim.l2_regularizer(l2_penalty),
        scope="gates"+sub_scope)

    output = tf.einsum("ijk,ik->ij", model_input, gate_activations)
    return {"predictions": output} 
開發者ID:wangheda,項目名稱:youtube-8m,代碼行數:24,代碼來源:input_moe_model.py


注:本文中的tensorflow.contrib.slim.l2_regularizer方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。