當前位置: 首頁>>代碼示例>>Python>>正文


Python slim.get_model_variables方法代碼示例

本文整理匯總了Python中tensorflow.contrib.slim.get_model_variables方法的典型用法代碼示例。如果您正苦於以下問題:Python slim.get_model_variables方法的具體用法?Python slim.get_model_variables怎麽用?Python slim.get_model_variables使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.contrib.slim的用法示例。


在下文中一共展示了slim.get_model_variables方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: load_ckpt

# 需要導入模塊: from tensorflow.contrib import slim [as 別名]
# 或者: from tensorflow.contrib.slim import get_model_variables [as 別名]
def load_ckpt(ckpt_name, var_scope_name, scope, constructor, input_tensor, label_offset, load_weights, **kwargs):
    """ 
    Arguments
        ckpt_name       file name of the checkpoint
        var_scope_name  name of the variable scope
        scope           arg_scope
        constructor     constructor of the model
        input_tensor    tensor of input image
        label_offset    whether it is 1000 classes or 1001 classes, if it is 1001, remove class 0
        load_weights    whether to load weights
        kwargs 
            is_training 
            create_aux_logits 
    """
    with slim.arg_scope(scope):
        logits, endpoints = constructor(\
                input_tensor, num_classes=1000+label_offset, \
                scope=var_scope_name, **kwargs)
    if load_weights:
        init_fn = slim.assign_from_checkpoint_fn(\
                ckpt_name, slim.get_model_variables(var_scope_name))
        init_fn(K.get_session())
    return logits, endpoints 
開發者ID:sangxia,項目名稱:nips-2017-adversarial,代碼行數:25,代碼來源:model_wrappers.py

示例2: build_prediction_graph

# 需要導入模塊: from tensorflow.contrib import slim [as 別名]
# 或者: from tensorflow.contrib.slim import get_model_variables [as 別名]
def build_prediction_graph(self, serialized_examples):    

    video_id, model_input_raw, labels_batch, num_frames = (
        self.reader.prepare_serialized_examples(serialized_examples))

    feature_dim = len(model_input_raw.get_shape()) - 1
    model_input = tf.nn.l2_normalize(model_input_raw, feature_dim)

    with tf.name_scope("model"):
      result = self.model.create_model(
          model_input,
          num_frames=num_frames,
          vocab_size=self.reader.num_classes,
          labels=labels_batch,
          is_training=False)

      for variable in slim.get_model_variables():
        tf.summary.histogram(variable.op.name, variable)

      predictions = result["predictions"]

      top_predictions, top_indices = tf.nn.top_k(predictions, 
          _TOP_PREDICTIONS_IN_OUTPUT)
    return video_id, top_indices, top_predictions 
開發者ID:antoine77340,項目名稱:Youtube-8M-WILLOW,代碼行數:26,代碼來源:export_model.py

示例3: classify

# 需要導入模塊: from tensorflow.contrib import slim [as 別名]
# 或者: from tensorflow.contrib.slim import get_model_variables [as 別名]
def classify(model_range, seg_range, feature_lr, classifier_lr):
        feat_opt = tf.train.AdamOptimizer(feature_lr)
        clas_opt = tf.train.AdamOptimizer(classifier_lr)
        for model in model_range:
            for seg in seg_range:
                with tf.variable_scope('classifier-{}-{}'.format(model, seg)):
                    self.preds[(model, seg)] = slim.conv2d(self.feature, 500, [1, 1])
                    self.clas_vars[(model, seg)] = slim.get_model_variables()[-2:]

                with tf.variable_scope('losses-{}-{}'.format(model, seg)):
                    self.losses[(model, seg)] = self.loss(self.labels, self.preds[(model, seg)])
                    grad = tf.gradients(self.losses[(model, seg)], self.feat_vars + self.clas_vars[(model, seg)])
                    train_op_feat = feat_opt.apply_gradients(zip(grad[:-2], self.feat_vars))
                    train_op_clas = clas_opt.apply_gradients(zip(grad[-2:], self.clas_vars[(model, seg)]))
                    self.train_ops[(model, seg)] = tf.group(train_op_feat, train_op_clas)
        return self.losses, self.train_ops 
開發者ID:halimacc,項目名稱:DenseHumanBodyCorrespondences,代碼行數:18,代碼來源:net.py

示例4: _get_init_fn

# 需要導入模塊: from tensorflow.contrib import slim [as 別名]
# 或者: from tensorflow.contrib.slim import get_model_variables [as 別名]
def _get_init_fn():
    vgg_checkpoint_path = "vgg_19.ckpt"
    if tf.gfile.IsDirectory(vgg_checkpoint_path):
        checkpoint_path = tf.train.latest_checkpoint(vgg_checkpoint_path)
    else:
        checkpoint_path = vgg_checkpoint_path

    variables_to_restore = []
    for var in slim.get_model_variables():
        tf.logging.info('model_var: %s' % var)
        excluded = False
        for exclusion in ['vgg_19/fc']:
            if var.op.name.startswith(exclusion):
                excluded = True
                tf.logging.info('exclude:%s' % exclusion)
                break
        if not excluded:
            variables_to_restore.append(var)

    tf.logging.info('Fine-tuning from %s' % checkpoint_path)
    return slim.assign_from_checkpoint_fn(
        checkpoint_path,
        variables_to_restore,
        ignore_missing_vars=True) 
開發者ID:JianqiangRen,項目名稱:AAMS,代碼行數:26,代碼來源:train.py

示例5: get_init_fn

# 需要導入模塊: from tensorflow.contrib import slim [as 別名]
# 或者: from tensorflow.contrib.slim import get_model_variables [as 別名]
def get_init_fn(checkpoints_dir, model_name='inception_v1.ckpt'):
    """Returns a function run by the chief worker to warm-start the training.
    """
    checkpoint_exclude_scopes=["InceptionV1/Logits", "InceptionV1/AuxLogits"]
    
    exclusions = [scope.strip() for scope in checkpoint_exclude_scopes]

    variables_to_restore = []
    for var in slim.get_model_variables():
        excluded = False
        for exclusion in exclusions:
            if var.op.name.startswith(exclusion):
                excluded = True
                break
        if not excluded:
            variables_to_restore.append(var)

    return slim.assign_from_checkpoint_fn(
        os.path.join(checkpoints_dir, model_name),
        variables_to_restore) 
開發者ID:anthonyhu,項目名稱:tumblr-emotions,代碼行數:22,代碼來源:im_model.py

示例6: prepare_inception_score_classifier

# 需要導入模塊: from tensorflow.contrib import slim [as 別名]
# 或者: from tensorflow.contrib.slim import get_model_variables [as 別名]
def prepare_inception_score_classifier(classifier_name, num_classes, images, return_saver=True):
    network_fn = nets_factory.get_network_fn(
      classifier_name,
      num_classes=num_classes,
      weight_decay=0.0,
      is_training=False,
    )
    # Note: you may need to change the prediction_fn here.
    try:
      logits, end_points = network_fn(images, prediction_fn=tf.sigmoid, create_aux_logits=False)
    except TypeError:
      tf.logging.warning('Cannot specify prediction_fn=tf.sigmoid, create_aux_logits=False.')
      logits, end_points = network_fn(images, )

    variables_to_restore = slim.get_model_variables(scope=nets_factory.scopes_map[classifier_name])
    predictions = end_points['Predictions']
    if return_saver:
      saver = tf.train.Saver(variables_to_restore)
      return predictions, end_points, saver
    else:
      return predictions, end_points 
開發者ID:jerryli27,項目名稱:TwinGAN,代碼行數:23,代碼來源:image_generation.py

示例7: __add_summaries

# 需要導入模塊: from tensorflow.contrib import slim [as 別名]
# 或者: from tensorflow.contrib.slim import get_model_variables [as 別名]
def __add_summaries(self,end_points,learning_rate,total_loss):
        for end_point in end_points:
            x = end_points[end_point]
            tf.summary.histogram('activations/' + end_point, x)
            tf.summary.scalar('sparsity/' + end_point, tf.nn.zero_fraction(x))
        for loss in tf.get_collection(tf.GraphKeys.LOSSES):
            tf.summary.scalar('losses/%s' % loss.op.name, loss)
        # Add total_loss to summary.
        tf.summary.scalar('total_loss', total_loss)

        # Add summaries for variables.
        for variable in slim.get_model_variables():
            tf.summary.histogram(variable.op.name, variable)
        tf.summary.scalar('learning_rate', learning_rate)

        return 
開發者ID:LevinJ,項目名稱:SSD_tensorflow_VOC,代碼行數:18,代碼來源:slim_train_test.py

示例8: get_init_fn

# 需要導入模塊: from tensorflow.contrib import slim [as 別名]
# 或者: from tensorflow.contrib.slim import get_model_variables [as 別名]
def get_init_fn(self, checkpoint_path):
        """Returns a function run by the chief worker to warm-start the training."""
        checkpoint_exclude_scopes=["InceptionV4/Logits", "InceptionV4/AuxLogits"]
        
        exclusions = [scope.strip() for scope in checkpoint_exclude_scopes]
    
        variables_to_restore = []
        for var in slim.get_model_variables():
            excluded = False
            for exclusion in exclusions:
                if var.op.name.startswith(exclusion):
                    excluded = True
                    break
            if not excluded:
                variables_to_restore.append(var)
    
        return slim.assign_from_checkpoint_fn(
          checkpoint_path,
          variables_to_restore) 
開發者ID:LevinJ,項目名稱:SSD_tensorflow_VOC,代碼行數:21,代碼來源:pretrained.py

示例9: __add_summaries

# 需要導入模塊: from tensorflow.contrib import slim [as 別名]
# 或者: from tensorflow.contrib.slim import get_model_variables [as 別名]
def __add_summaries(self,end_points,learning_rate,total_loss):
        # Add summaries for end_points (activations).

        for end_point in end_points:
            x = end_points[end_point]
            tf.summary.histogram('activations/' + end_point, x)
            tf.summary.scalar('sparsity/' + end_point,
                                            tf.nn.zero_fraction(x))
        # Add summaries for losses and extra losses.
        
        tf.summary.scalar('total_loss', total_loss)
        for loss in tf.get_collection('EXTRA_LOSSES'):
            tf.summary.scalar(loss.op.name, loss)

        # Add summaries for variables.
        for variable in slim.get_model_variables():
            tf.summary.histogram(variable.op.name, variable)

        return 
開發者ID:LevinJ,項目名稱:SSD_tensorflow_VOC,代碼行數:21,代碼來源:train_model.py

示例10: build_prediction_graph

# 需要導入模塊: from tensorflow.contrib import slim [as 別名]
# 或者: from tensorflow.contrib.slim import get_model_variables [as 別名]
def build_prediction_graph(self, serialized_examples):
        video_id, model_input_raw, labels_batch, num_frames = (
            self.reader.prepare_serialized_examples(serialized_examples))

        feature_dim = len(model_input_raw.get_shape()) - 1
        model_input = tf.nn.l2_normalize(model_input_raw, feature_dim)

        with tf.variable_scope("tower"):
            result = self.model.create_model(
                model_input,
                num_frames=num_frames,
                vocab_size=self.reader.num_classes,
                labels=labels_batch,
                is_training=False)

            for variable in slim.get_model_variables():
                tf.summary.histogram(variable.op.name, variable)

            predictions = result["predictions"]

            top_predictions, top_indices = tf.nn.top_k(predictions,
                                                       _TOP_PREDICTIONS_IN_OUTPUT)
        return video_id, top_indices, top_predictions 
開發者ID:pomonam,項目名稱:AttentionCluster,代碼行數:25,代碼來源:export_model.py

示例11: build_prediction_graph

# 需要導入模塊: from tensorflow.contrib import slim [as 別名]
# 或者: from tensorflow.contrib.slim import get_model_variables [as 別名]
def build_prediction_graph(self, serialized_examples):
    video_id, model_input_raw, labels_batch, num_frames = (
        self.reader.prepare_serialized_examples(serialized_examples))

    feature_dim = len(model_input_raw.get_shape()) - 1
    model_input = tf.nn.l2_normalize(model_input_raw, feature_dim)

    with tf.variable_scope("tower"):
      layers_keep_probs=tf.Variable([1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0], tf.float32, name="layers_keep_probs")
      result = self.model.create_model(
          model_input,
          num_frames=num_frames,
          vocab_size=self.reader.num_classes,
          labels=labels_batch,
          is_training=False, 
          layers_keep_probs=layers_keep_probs)

      for variable in slim.get_model_variables():
        tf.summary.histogram(variable.op.name, variable)

      predictions = result["predictions"]

      top_predictions, top_indices = tf.nn.top_k(predictions,
          _TOP_PREDICTIONS_IN_OUTPUT)
    return video_id, top_indices, top_predictions 
開發者ID:mpekalski,項目名稱:Y8M,代碼行數:27,代碼來源:export_model.py

示例12: build_prediction_graph

# 需要導入模塊: from tensorflow.contrib import slim [as 別名]
# 或者: from tensorflow.contrib.slim import get_model_variables [as 別名]
def build_prediction_graph(self, serialized_examples):
    video_id, model_input_raw, labels_batch, num_frames = (
        self.reader.prepare_serialized_examples(serialized_examples))

    feature_dim = len(model_input_raw.get_shape()) - 1
    model_input = tf.nn.l2_normalize(model_input_raw, feature_dim)

    with tf.variable_scope("tower"):
      result = self.model.create_model(
          model_input,
          num_frames=num_frames,
          vocab_size=self.reader.num_classes,
          labels=labels_batch,
          is_training=False)

      for variable in slim.get_model_variables():
        tf.summary.histogram(variable.op.name, variable)

      predictions = result["predictions"]

      top_predictions, top_indices = tf.nn.top_k(predictions,
          _TOP_PREDICTIONS_IN_OUTPUT)
    return video_id, top_indices, top_predictions 
開發者ID:mpekalski,項目名稱:Y8M,代碼行數:25,代碼來源:export_model.py

示例13: test_clean_accuracy

# 需要導入模塊: from tensorflow.contrib import slim [as 別名]
# 或者: from tensorflow.contrib.slim import get_model_variables [as 別名]
def test_clean_accuracy(self):
        """Check model is accurate on unperturbed images."""
        input_dir = FLAGS.input_image_dir
        metadata_file_path = FLAGS.metadata_file_path
        num_images = 16
        batch_shape = (num_images, 299, 299, 3)
        images, labels = load_images(
            input_dir, metadata_file_path, batch_shape)
        num_classes = 1001

        tf.logging.set_verbosity(tf.logging.INFO)
        with tf.Graph().as_default():
            # Prepare graph
            x_input = tf.placeholder(tf.float32, shape=batch_shape)
            y_label = tf.placeholder(tf.int32, shape=(num_images,))
            model = InceptionModel(num_classes)
            logits = model.get_logits(x_input)
            acc = _top_1_accuracy(logits, y_label)

            # Run computation
            saver = tf.train.Saver(slim.get_model_variables())

            session_creator = tf.train.ChiefSessionCreator(
                scaffold=tf.train.Scaffold(saver=saver),
                checkpoint_filename_with_path=FLAGS.checkpoint_path,
                master=FLAGS.master)

            with tf.train.MonitoredSession(
                    session_creator=session_creator) as sess:
                acc_val = sess.run(acc, feed_dict={
                    x_input: images, y_label: labels})
                tf.logging.info('Accuracy: %s', acc_val)
                assert acc_val > 0.8 
開發者ID:StephanZheng,項目名稱:neural-fingerprinting,代碼行數:35,代碼來源:test_imagenet_attacks.py

示例14: get_tuned_variables

# 需要導入模塊: from tensorflow.contrib import slim [as 別名]
# 或者: from tensorflow.contrib.slim import get_model_variables [as 別名]
def get_tuned_variables():
    exclusions = [scope.strip() for scope in CHECKPOINT_EXCLUDE_SCOPES.split(',')]

    variables_to_restore = []
    for var in slim.get_model_variables():
        excluded = False
        for exclusion in exclusions:
            if var.op.name.startswith(exclusion):
                excluded = True
                break
        if not excluded:
            variables_to_restore.append(var)
    return variables_to_restore

# 獲取所有需要訓練的變量列表 
開發者ID:wdxtub,項目名稱:deep-learning-note,代碼行數:17,代碼來源:train.py

示例15: test

# 需要導入模塊: from tensorflow.contrib import slim [as 別名]
# 或者: from tensorflow.contrib.slim import get_model_variables [as 別名]
def test(self):
	
	trg_images, trg_labels = self.load_mnist(self.mnist_dir, split='test')       
	
	# build a graph
	model = self.model
	model.build_model()
		
	config = tf.ConfigProto()
	config.allow_soft_placement = True
	config.gpu_options.allow_growth = True
	
        with tf.Session(config=config) as sess:
	    tf.global_variables_initializer().run()
		
	    print ('Loading  model.')
	    variables_to_restore = slim.get_model_variables()
	    restorer = tf.train.Saver(variables_to_restore)
	    restorer.restore(sess, self.trained_model)
    

	    trg_acc, trg_entr = sess.run(fetches=[model.trg_accuracy, model.trg_entropy], 
					    feed_dict={model.trg_images: trg_images[:], 
							model.trg_labels: trg_labels[:]})
					      
	    print ('test acc [%.3f]' %(trg_acc))
	    print ('entropy [%.3f]' %(trg_entr))
	    with open('test_'+ str(model.alpha) +'_' + model.method + '.txt', "a") as resfile:
		resfile.write(str(trg_acc)+'\t'+str(trg_entr)+'\n')
	    
	    #~ print confusion_matrix(trg_labels, trg_pred) 
開發者ID:pmorerio,項目名稱:minimal-entropy-correlation-alignment,代碼行數:33,代碼來源:solver.py


注:本文中的tensorflow.contrib.slim.get_model_variables方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。