當前位置: 首頁>>代碼示例>>Python>>正文


Python slim.dropout方法代碼示例

本文整理匯總了Python中tensorflow.contrib.slim.dropout方法的典型用法代碼示例。如果您正苦於以下問題:Python slim.dropout方法的具體用法?Python slim.dropout怎麽用?Python slim.dropout使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.contrib.slim的用法示例。


在下文中一共展示了slim.dropout方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: AddDropout

# 需要導入模塊: from tensorflow.contrib import slim [as 別名]
# 或者: from tensorflow.contrib.slim import dropout [as 別名]
def AddDropout(self, prev_layer, index):
    """Adds a dropout layer.

    Args:
      prev_layer: Input tensor.
      index:      Position in model_str to start parsing

    Returns:
      Output tensor, end index in model_str.
    """
    pattern = re.compile(R'(Do)({\w+})?')
    m = pattern.match(self.model_str, index)
    if m is None:
      return None, None
    name = self._GetLayerName(m.group(0), index, m.group(2))
    layer = slim.dropout(
        prev_layer, 0.5, is_training=self.is_training, scope=name)
    return layer, m.end() 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:20,代碼來源:vgslspecs.py

示例2: E

# 需要導入模塊: from tensorflow.contrib import slim [as 別名]
# 或者: from tensorflow.contrib.slim import dropout [as 別名]
def E(self, images, is_training = False, reuse=False):
	
	if images.get_shape()[3] == 3:
	    images = tf.image.rgb_to_grayscale(images)
	
	with tf.variable_scope('encoder',reuse=reuse):
	    with slim.arg_scope([slim.fully_connected], activation_fn=tf.nn.relu):
		with slim.arg_scope([slim.conv2d], activation_fn=tf.nn.relu, padding='VALID'):
		    net = slim.conv2d(images, 64, 5, scope='conv1')
		    net = slim.max_pool2d(net, 2, stride=2, scope='pool1')
		    net = slim.conv2d(net, 128, 5, scope='conv2')
		    net = slim.max_pool2d(net, 2, stride=2, scope='pool2')
		    net = tf.contrib.layers.flatten(net)
		    net = slim.fully_connected(net, 1024, activation_fn=tf.nn.relu, scope='fc3')
		    net = slim.dropout(net, 0.5, is_training=is_training)
		    net = slim.fully_connected(net, self.hidden_repr_size, activation_fn=tf.tanh,scope='fc4')
		    # dropout here or not?
		    #~ net = slim.dropout(net, 0.5, is_training=is_training)
		    return net 
開發者ID:pmorerio,項目名稱:minimal-entropy-correlation-alignment,代碼行數:21,代碼來源:model.py

示例3: _arg_scope

# 需要導入模塊: from tensorflow.contrib import slim [as 別名]
# 或者: from tensorflow.contrib.slim import dropout [as 別名]
def _arg_scope(self, is_training, reuse=None):
        weight_decay = 0.0
        keep_probability = 1.0

        batch_norm_params = {
            'is_training': is_training,
            # Decay for the moving averages.
            'decay': 0.995,
            # epsilon to prevent 0s in variance.
            'epsilon': 0.001
        }

        with slim.arg_scope([slim.conv2d, slim.fully_connected],
                            weights_initializer=slim.xavier_initializer_conv2d(uniform=True),
                            weights_regularizer=slim.l2_regularizer(weight_decay),
                            normalizer_fn=slim.batch_norm,
                            normalizer_params=batch_norm_params):
            with tf.variable_scope(self._scope, self._scope, reuse=reuse):
                with slim.arg_scope([slim.batch_norm, slim.dropout],
                                    is_training=is_training) as sc:
                    return sc 
開發者ID:Sanster,項目名稱:tf_ctpn,代碼行數:23,代碼來源:squeezenet.py

示例4: conv_tower_fn

# 需要導入模塊: from tensorflow.contrib import slim [as 別名]
# 或者: from tensorflow.contrib.slim import dropout [as 別名]
def conv_tower_fn(self, images, is_training=True, reuse=None):
    """Computes convolutional features using the InceptionV3 model.

    Args:
      images: A tensor of shape [batch_size, height, width, channels].
      is_training: whether is training or not.
      reuse: whether or not the network and its variables should be reused. To
        be able to reuse 'scope' must be given.

    Returns:
      A tensor of shape [batch_size, OH, OW, N], where OWxOH is resolution of
      output feature map and N is number of output features (depends on the
      network architecture).
    """
    mparams = self._mparams['conv_tower_fn']
    logging.debug('Using final_endpoint=%s', mparams.final_endpoint)
    with tf.variable_scope('conv_tower_fn/INCE'):
      if reuse:
        tf.get_variable_scope().reuse_variables()
      with slim.arg_scope(inception.inception_v3_arg_scope()):
        with slim.arg_scope([slim.batch_norm, slim.dropout],
                            is_training=is_training):
          net, _ = inception.inception_v3_base(
            images, final_endpoint=mparams.final_endpoint)
      return net 
開發者ID:rky0930,項目名稱:yolo_v2,代碼行數:27,代碼來源:model.py

示例5: mobilenet_v2_arg_scope

# 需要導入模塊: from tensorflow.contrib import slim [as 別名]
# 或者: from tensorflow.contrib.slim import dropout [as 別名]
def mobilenet_v2_arg_scope(weight_decay, is_training=True, depth_multiplier=1.0, regularize_depthwise=False,
                           dropout_keep_prob=1.0):

    regularizer = tf.contrib.layers.l2_regularizer(weight_decay)
    if regularize_depthwise:
        depthwise_regularizer = regularizer
    else:
        depthwise_regularizer = None

    with slim.arg_scope([slim.conv2d, slim.separable_conv2d],
                        activation_fn=tf.nn.relu, normalizer_fn=slim.batch_norm,
                        normalizer_params={'is_training': is_training, 'center': True, 'scale': True }):

        with slim.arg_scope([slim.conv2d], weights_regularizer=regularizer):

            with slim.arg_scope([slim.separable_conv2d],
                                weights_regularizer=depthwise_regularizer, depth_multiplier=depth_multiplier):

                with slim.arg_scope([slim.dropout], is_training=is_training, keep_prob=dropout_keep_prob) as sc:

                    return sc 
開發者ID:ohadlights,項目名稱:mobilenetv2,代碼行數:23,代碼來源:mobilenetv2.py

示例6: argscope

# 需要導入模塊: from tensorflow.contrib import slim [as 別名]
# 或者: from tensorflow.contrib.slim import dropout [as 別名]
def argscope(is_training=None, normalizer_fn=slim.layer_norm):
  """Default TF argscope used for convnet-based grasping models.

  Args:
    is_training: Whether this argscope is for training or inference.
    normalizer_fn: Which conv/fc normalizer to use.
  Returns:
    Dictionary of argument overrides.
  """
  with slim.arg_scope([slim.batch_norm, slim.dropout], is_training=is_training):
    with slim.arg_scope(
        [slim.conv2d, slim.fully_connected],
        weights_initializer=tf.truncated_normal_initializer(stddev=0.01),
        activation_fn=tf.nn.relu,
        normalizer_fn=normalizer_fn):
      with slim.arg_scope(
          [slim.conv2d, slim.max_pool2d], stride=2, padding='VALID') as scope:
        return scope 
開發者ID:google-research,項目名稱:tensor2robot,代碼行數:20,代碼來源:tf_modules.py

示例7: build_predictions

# 需要導入模塊: from tensorflow.contrib import slim [as 別名]
# 或者: from tensorflow.contrib.slim import dropout [as 別名]
def build_predictions(self, net, rois, is_training, initializer, initializer_bbox):

        # Crop image ROIs
        pool5 = self._crop_pool_layer(net, rois, "pool5")
        pool5_flat = slim.flatten(pool5, scope='flatten')

        # Fully connected layers
        fc6 = slim.fully_connected(pool5_flat, 4096, scope='fc6')
        if is_training:
            fc6 = slim.dropout(fc6, keep_prob=0.5, is_training=True, scope='dropout6')

        fc7 = slim.fully_connected(fc6, 4096, scope='fc7')
        if is_training:
            fc7 = slim.dropout(fc7, keep_prob=0.5, is_training=True, scope='dropout7')

        # Scores and predictions
        cls_score = slim.fully_connected(fc7, self._num_classes, weights_initializer=initializer, trainable=is_training, activation_fn=None, scope='cls_score')
        cls_prob = self._softmax_layer(cls_score, "cls_prob")
        bbox_prediction = slim.fully_connected(fc7, self._num_classes * 4, weights_initializer=initializer_bbox, trainable=is_training, activation_fn=None, scope='bbox_pred')

        return cls_score, cls_prob, bbox_prediction 
開發者ID:dBeker,項目名稱:Faster-RCNN-TensorFlow-Python3,代碼行數:23,代碼來源:vgg16.py

示例8: head_to_tail

# 需要導入模塊: from tensorflow.contrib import slim [as 別名]
# 或者: from tensorflow.contrib.slim import dropout [as 別名]
def head_to_tail(self, fc7_H, fc7_O, pool5_SH, pool5_SO, sp, is_training, name):
        with slim.arg_scope(resnet_arg_scope(is_training=is_training)):

            fc7_SH = tf.reduce_mean(pool5_SH, axis=[1, 2])
            fc7_SO = tf.reduce_mean(pool5_SO, axis=[1, 2])

            Concat_SH     = tf.concat([fc7_H[:self.H_num,:], fc7_SH[:self.H_num,:]], 1)

            fc8_SH        = slim.fully_connected(Concat_SH, self.num_fc, scope='fc8_SH')
            fc8_SH        = slim.dropout(fc8_SH, keep_prob=0.5, is_training=is_training, scope='dropout8_SH')
            fc9_SH        = slim.fully_connected(fc8_SH, self.num_fc, scope='fc9_SH')
            fc9_SH        = slim.dropout(fc9_SH, keep_prob=0.5, is_training=is_training, scope='dropout9_SH')  

            Concat_HOS   = tf.concat([fc7_H, \
                                      fc7_O, \
                                      fc7_SH,\
                                      fc7_SO, sp], 1)

            fc8_HOS       = slim.fully_connected(Concat_HOS, self.num_fc, scope='fc8_HOS')
            fc8_HOS       = slim.dropout(fc8_HOS, keep_prob=0.5, is_training=is_training, scope='dropout8_HOS')
            fc9_HOS       = slim.fully_connected(fc8_HOS, self.num_fc, scope='fc9_HOS')
            fc9_HOS       = slim.dropout(fc9_HOS, keep_prob=0.5, is_training=is_training, scope='dropout9_HOS')   

        return fc9_SH, fc9_HOS 
開發者ID:vt-vl-lab,項目名稱:iCAN,代碼行數:26,代碼來源:iCAN_ResNet50_VCOCO_Early.py

示例9: head_to_tail

# 需要導入模塊: from tensorflow.contrib import slim [as 別名]
# 或者: from tensorflow.contrib.slim import dropout [as 別名]
def head_to_tail(self, fc7_H, fc7_O, pool5_SH, pool5_SO, sp, is_training, name):
        with slim.arg_scope(resnet_arg_scope(is_training=is_training)):

            fc7_SH = tf.reduce_mean(pool5_SH, axis=[1, 2])
            fc7_SO = tf.reduce_mean(pool5_SO, axis=[1, 2])

            Concat_SH     = tf.concat([fc7_H, fc7_SH], 1)
            fc8_SH        = slim.fully_connected(Concat_SH, self.num_fc, scope='fc8_SH')
            fc8_SH        = slim.dropout(fc8_SH, keep_prob=0.5, is_training=is_training, scope='dropout8_SH')
            fc9_SH        = slim.fully_connected(fc8_SH, self.num_fc, scope='fc9_SH')
            fc9_SH        = slim.dropout(fc9_SH,    keep_prob=0.5, is_training=is_training, scope='dropout9_SH')  

            Concat_SO     = tf.concat([fc7_O, fc7_SO], 1)
            fc8_SO        = slim.fully_connected(Concat_SO, self.num_fc, scope='fc8_SO')
            fc8_SO        = slim.dropout(fc8_SO, keep_prob=0.5, is_training=is_training, scope='dropout8_SO')
            fc9_SO        = slim.fully_connected(fc8_SO, self.num_fc, scope='fc9_SO')
            fc9_SO        = slim.dropout(fc9_SO,    keep_prob=0.5, is_training=is_training, scope='dropout9_SO')  

            Concat_SHsp   = tf.concat([fc7_H, sp], 1)
            Concat_SHsp   = slim.fully_connected(Concat_SHsp, self.num_fc, scope='Concat_SHsp')
            Concat_SHsp   = slim.dropout(Concat_SHsp, keep_prob=0.5, is_training=is_training, scope='dropout6_SHsp')
            fc7_SHsp      = slim.fully_connected(Concat_SHsp, self.num_fc, scope='fc7_SHsp')
            fc7_SHsp      = slim.dropout(fc7_SHsp,  keep_prob=0.5, is_training=is_training, scope='dropout7_SHsp')

        return fc9_SH, fc9_SO, fc7_SHsp 
開發者ID:vt-vl-lab,項目名稱:iCAN,代碼行數:27,代碼來源:iCAN_ResNet50_HICO.py

示例10: AddDropout

# 需要導入模塊: from tensorflow.contrib import slim [as 別名]
# 或者: from tensorflow.contrib.slim import dropout [as 別名]
def AddDropout(self, prev_layer, index, reuse=None):
        """Adds a dropout layer.
    
        Args:
          prev_layer: Input tensor.
          index:      Position in model_str to start parsing
    
        Returns:
          Output tensor, end index in model_str.
        """
        pattern = re.compile(R'(Do)({\w+})?')
        m = pattern.match(self.model_str, index)
        if m is None:
            return None, None
        name = self._GetLayerName(m.group(0), index, m.group(2))
        layer = slim.dropout(
            prev_layer, 0.5, is_training=self.is_training, scope=name)
        return layer, m.end() 
開發者ID:ftramer,項目名稱:ad-versarial,代碼行數:20,代碼來源:vgslspecs.py

示例11: fc_network

# 需要導入模塊: from tensorflow.contrib import slim [as 別名]
# 或者: from tensorflow.contrib.slim import dropout [as 別名]
def fc_network(x, neurons, wt_decay, name, num_pred=None, offset=0,
               batch_norm_param=None, dropout_ratio=0.0, is_training=None): 
  if dropout_ratio > 0:
    assert(is_training is not None), \
      'is_training needs to be defined when trainnig with dropout.'
  
  repr = []
  for i, neuron in enumerate(neurons):
    init_var = np.sqrt(2.0/neuron)
    if batch_norm_param is not None:
      x = slim.fully_connected(x, neuron, activation_fn=None,
                               weights_initializer=tf.random_normal_initializer(stddev=init_var),
                               weights_regularizer=slim.l2_regularizer(wt_decay),
                               normalizer_fn=slim.batch_norm,
                               normalizer_params=batch_norm_param,
                               biases_initializer=tf.zeros_initializer(),
                               scope='{:s}_{:d}'.format(name, offset+i))
    else:
      x = slim.fully_connected(x, neuron, activation_fn=tf.nn.relu,
                               weights_initializer=tf.random_normal_initializer(stddev=init_var),
                               weights_regularizer=slim.l2_regularizer(wt_decay),
                               biases_initializer=tf.zeros_initializer(),
                               scope='{:s}_{:d}'.format(name, offset+i))
    if dropout_ratio > 0:
       x = slim.dropout(x, keep_prob=1-dropout_ratio, is_training=is_training,
                        scope='{:s}_{:d}'.format('dropout_'+name, offset+i))
    repr.append(x)
  
  if num_pred is not None:
    init_var = np.sqrt(2.0/num_pred)
    x = slim.fully_connected(x, num_pred,
                             weights_regularizer=slim.l2_regularizer(wt_decay),
                             weights_initializer=tf.random_normal_initializer(stddev=init_var),
                             biases_initializer=tf.zeros_initializer(),
                             activation_fn=None,
                             scope='{:s}_pred'.format(name))
  return x, repr 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:39,代碼來源:tf_utils.py

示例12: create_inner_block

# 需要導入模塊: from tensorflow.contrib import slim [as 別名]
# 或者: from tensorflow.contrib.slim import dropout [as 別名]
def create_inner_block(
        incoming, scope, nonlinearity=tf.nn.elu,
        weights_initializer=tf.truncated_normal_initializer(1e-3),
        bias_initializer=tf.zeros_initializer(), regularizer=None,
        increase_dim=False, summarize_activations=True):
    n = incoming.get_shape().as_list()[-1]
    stride = 1
    if increase_dim:
        n *= 2
        stride = 2

    incoming = slim.conv2d(
        incoming, n, [3, 3], stride, activation_fn=nonlinearity, padding="SAME",
        normalizer_fn=_batch_norm_fn, weights_initializer=weights_initializer,
        biases_initializer=bias_initializer, weights_regularizer=regularizer,
        scope=scope + "/1")
    if summarize_activations:
        tf.summary.histogram(incoming.name + "/activations", incoming)

    incoming = slim.dropout(incoming, keep_prob=0.6)

    incoming = slim.conv2d(
        incoming, n, [3, 3], 1, activation_fn=None, padding="SAME",
        normalizer_fn=None, weights_initializer=weights_initializer,
        biases_initializer=bias_initializer, weights_regularizer=regularizer,
        scope=scope + "/2")
    return incoming 
開發者ID:nwojke,項目名稱:deep_sort,代碼行數:29,代碼來源:freeze_model.py

示例13: _network_factory

# 需要導入模塊: from tensorflow.contrib import slim [as 別名]
# 或者: from tensorflow.contrib.slim import dropout [as 別名]
def _network_factory(weight_decay=1e-8):

    def factory_fn(image, reuse):
            with slim.arg_scope([slim.batch_norm, slim.dropout],
                                is_training=False):
                with slim.arg_scope([slim.conv2d, slim.fully_connected,
                                     slim.batch_norm, slim.layer_norm],
                                    reuse=reuse):
                    features, logits = _create_network(
                        image, reuse=reuse, weight_decay=weight_decay)
                    return features, logits

    return factory_fn 
開發者ID:nwojke,項目名稱:deep_sort,代碼行數:15,代碼來源:freeze_model.py

示例14: dropout

# 需要導入模塊: from tensorflow.contrib import slim [as 別名]
# 或者: from tensorflow.contrib.slim import dropout [as 別名]
def dropout(x,p=0.7):
    x=slim.dropout(x,keep_prob=p)
    return x 
開發者ID:xggIoU,項目名稱:centernet_tensorflow_wilderface_voc,代碼行數:5,代碼來源:layer_utils.py

示例15: inference

# 需要導入模塊: from tensorflow.contrib import slim [as 別名]
# 或者: from tensorflow.contrib.slim import dropout [as 別名]
def inference(images, keep_probability, phase_train=True, bottleneck_layer_size=128, weight_decay=0.0, reuse=None):
    batch_norm_params = {
        # Decay for the moving averages.
        'decay': 0.995,
        # epsilon to prevent 0s in variance.
        'epsilon': 0.001,
        # force in-place updates of mean and variance estimates
        'updates_collections': None,
        # Moving averages ends up in the trainable variables collection
        'variables_collections': [ tf.GraphKeys.TRAINABLE_VARIABLES ],
    }
    with slim.arg_scope([slim.conv2d, slim.fully_connected],
                        weights_initializer=slim.xavier_initializer_conv2d(uniform=True),
                        weights_regularizer=slim.l2_regularizer(weight_decay),
                        normalizer_fn=slim.batch_norm,
                        normalizer_params=batch_norm_params):
        with tf.variable_scope('squeezenet', [images], reuse=reuse):
            with slim.arg_scope([slim.batch_norm, slim.dropout],
                                is_training=phase_train):
                net = slim.conv2d(images, 96, [7, 7], stride=2, scope='conv1')
                net = slim.max_pool2d(net, [3, 3], stride=2, scope='maxpool1')
                net = fire_module(net, 16, 64, scope='fire2')
                net = fire_module(net, 16, 64, scope='fire3')
                net = fire_module(net, 32, 128, scope='fire4')
                net = slim.max_pool2d(net, [2, 2], stride=2, scope='maxpool4')
                net = fire_module(net, 32, 128, scope='fire5')
                net = fire_module(net, 48, 192, scope='fire6')
                net = fire_module(net, 48, 192, scope='fire7')
                net = fire_module(net, 64, 256, scope='fire8')
                net = slim.max_pool2d(net, [3, 3], stride=2, scope='maxpool8')
                net = fire_module(net, 64, 256, scope='fire9')
                net = slim.dropout(net, keep_probability)
                net = slim.conv2d(net, 1000, [1, 1], activation_fn=None, normalizer_fn=None, scope='conv10')
                net = slim.avg_pool2d(net, net.get_shape()[1:3], scope='avgpool10')
                net = tf.squeeze(net, [1, 2], name='logits')
                net = slim.fully_connected(net, bottleneck_layer_size, activation_fn=None, 
                        scope='Bottleneck', reuse=False)
    return net, None 
開發者ID:GaoangW,項目名稱:TNT,代碼行數:40,代碼來源:squeezenet.py


注:本文中的tensorflow.contrib.slim.dropout方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。