當前位置: 首頁>>代碼示例>>Python>>正文


Python slim.conv2d_in_plane方法代碼示例

本文整理匯總了Python中tensorflow.contrib.slim.conv2d_in_plane方法的典型用法代碼示例。如果您正苦於以下問題:Python slim.conv2d_in_plane方法的具體用法?Python slim.conv2d_in_plane怎麽用?Python slim.conv2d_in_plane使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.contrib.slim的用法示例。


在下文中一共展示了slim.conv2d_in_plane方法的5個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_slim_plane_conv

# 需要導入模塊: from tensorflow.contrib import slim [as 別名]
# 或者: from tensorflow.contrib.slim import conv2d_in_plane [as 別名]
def test_slim_plane_conv(self):
    graph = tf.Graph()
    with graph.as_default() as g:
      inputs = tf.placeholder(tf.float32, shape=[None,16,16,3],
          name='test_slim_plane_conv2d/input')
      with slim.arg_scope([slim.separable_conv2d], padding='SAME',
          weights_initializer=tf.truncated_normal_initializer(stddev=0.3)):
        net = slim.conv2d_in_plane(inputs, 2, [3, 3], scope='conv1')

    output_name = [net.op.name]
    self._test_tf_model(graph,
        {"test_slim_plane_conv2d/input:0":[1,16,16,3]},
        output_name, delta=1e-2)

  # TODO - this fails due to unsupported op "Tile" 
開發者ID:tf-coreml,項目名稱:tf-coreml,代碼行數:17,代碼來源:test_tf_converter.py

示例2: create_architecture_demo

# 需要導入模塊: from tensorflow.contrib import slim [as 別名]
# 或者: from tensorflow.contrib.slim import conv2d_in_plane [as 別名]
def create_architecture_demo(self, mode, num_classes, tag=None,
                          anchor_scales=(8, 16, 32), anchor_ratios=(0.5, 1, 2)):
    assert mode == 'TEST', 'only for demo'

    self._image = tf.placeholder(tf.float32, shape=[1, None, None, 3])
    self._lwir = tf.placeholder(tf.float32, shape=[1, None, None, 3])
    self._im_info = tf.placeholder(tf.float32, shape=[3])
    self._tag = tag

    self._num_classes = num_classes
    self._mode = mode
    self._anchor_scales = anchor_scales
    self._num_scales = len(anchor_scales)

    self._anchor_ratios = anchor_ratios
    self._num_ratios = len(anchor_ratios)

    self._num_anchors = self._num_scales * self._num_ratios

    training = mode == 'TRAIN'
    testing = mode == 'TEST'

    assert tag != None

    # handle most of the regularizers here
    weights_regularizer = tf.contrib.layers.l2_regularizer(cfg.TRAIN.WEIGHT_DECAY)
    if cfg.TRAIN.BIAS_DECAY:
      biases_regularizer = weights_regularizer
    else:
      biases_regularizer = tf.no_regularizer

    # select initializers
    if cfg.TRAIN.TRUNCATED:
      initializer = tf.truncated_normal_initializer(mean=0.0, stddev=0.01)
      initializer_bbox = tf.truncated_normal_initializer(mean=0.0, stddev=0.001)
    else:
      initializer = tf.random_normal_initializer(mean=0.0, stddev=0.01)
      initializer_bbox = tf.random_normal_initializer(mean=0.0, stddev=0.001)

    # list as many types of layers as possible, even if they are not used now
    with arg_scope([slim.conv2d, slim.conv2d_in_plane,
                    slim.conv2d_transpose, slim.separable_conv2d, slim.fully_connected], 
                    weights_regularizer=weights_regularizer,
                    biases_regularizer=biases_regularizer, 
                    biases_initializer=tf.constant_initializer(0.0)):
      self._build_network(training, initializer, initializer_bbox)

    layers_to_output = {}

    return layers_to_output 
開發者ID:Li-Chengyang,項目名稱:MSDS-RCNN,代碼行數:52,代碼來源:network.py

示例3: create_architecture

# 需要導入模塊: from tensorflow.contrib import slim [as 別名]
# 或者: from tensorflow.contrib.slim import conv2d_in_plane [as 別名]
def create_architecture(self, mode, num_classes, tag=None):
    self._image = tf.placeholder(tf.float32, shape=[1, None, None, 3])
    self._im_info = tf.placeholder(tf.float32, shape=[3])
    self._memory_size = tf.placeholder(tf.int32, shape=[2])
    self._gt_boxes = tf.placeholder(tf.float32, shape=[None, 5])
    self._num_gt = tf.placeholder(tf.int32, shape=[])
    self._tag = tag

    self._num_classes = num_classes
    self._mode = mode

    training = mode == 'TRAIN'
    testing = mode == 'TEST'

    assert tag is not None

    # handle most of the regularizers here
    weights_regularizer = tf.contrib.layers.l2_regularizer(cfg.TRAIN.WEIGHT_DECAY)
    if cfg.TRAIN.BIAS_DECAY:
      biases_regularizer = weights_regularizer
    else:
      biases_regularizer = tf.no_regularizer

    # list as many types of layers as possible, even if they are not used now
    with slim.arg_scope([slim.conv2d, slim.conv2d_in_plane, \
                    slim.conv2d_transpose, slim.separable_conv2d, slim.fully_connected], 
                    weights_regularizer=weights_regularizer,
                    biases_regularizer=biases_regularizer, 
                    biases_initializer=tf.constant_initializer(0.0)): 
      rois, cls_prob = self._build_network(training)

    layers_to_output = {'rois': rois}

    if not testing:
      self._add_losses()
      layers_to_output.update(self._losses)
      val_summaries = []
      with tf.device("/cpu:0"):
        val_summaries.append(self._add_gt_image_summary())
        val_summaries.append(self._add_pred_summary())
        for key, var in self._event_summaries.items():
          val_summaries.append(tf.summary.scalar(key, var))
        for key, var in self._score_summaries.items():
          self._add_score_summary(key, var)
        for var in self._act_summaries:
          self._add_act_summary(var)

      self._summary_op = tf.summary.merge_all()
      self._summary_op_val = tf.summary.merge(val_summaries)

    layers_to_output.update(self._predictions)

    return layers_to_output 
開發者ID:endernewton,項目名稱:iter-reason,代碼行數:55,代碼來源:network.py

示例4: create_architecture

# 需要導入模塊: from tensorflow.contrib import slim [as 別名]
# 或者: from tensorflow.contrib.slim import conv2d_in_plane [as 別名]
def create_architecture(self, mode, num_classes, tag=None):
    self._image = tf.placeholder(tf.float32, shape=[1, None, None, 3])
    self._im_info = tf.placeholder(tf.float32, shape=[3])
    self._memory_size = tf.placeholder(tf.int32, shape=[2])
    self._gt_boxes = tf.placeholder(tf.float32, shape=[None, 5])
    self._count_base = tf.ones([1, cfg.MEM.CROP_SIZE, cfg.MEM.CROP_SIZE, 1])
    self._num_gt = tf.placeholder(tf.int32, shape=[])
    self._tag = tag

    self._num_classes = num_classes
    self._mode = mode

    training = mode == 'TRAIN'
    testing = mode == 'TEST'

    assert tag is not None

    # handle most of the regularizers here
    weights_regularizer = tf.contrib.layers.l2_regularizer(cfg.TRAIN.WEIGHT_DECAY)
    if cfg.TRAIN.BIAS_DECAY:
      biases_regularizer = weights_regularizer
    else:
      biases_regularizer = tf.no_regularizer

    # list as many types of layers as possible, even if they are not used now
    with slim.arg_scope([slim.conv2d, slim.conv2d_in_plane, \
                        slim.conv2d_transpose, slim.separable_conv2d, slim.fully_connected], 
                        weights_regularizer=weights_regularizer,
                        biases_regularizer=biases_regularizer, 
                        biases_initializer=tf.constant_initializer(0.0)): 
      rois = self._build_memory(training, testing)

    layers_to_output = {'rois': rois}

    if not testing:
      self._add_memory_losses("loss")
      layers_to_output.update(self._losses)
      self._create_summary()

    layers_to_output.update(self._predictions)

    return layers_to_output

  # take the last predicted output 
開發者ID:endernewton,項目名稱:iter-reason,代碼行數:46,代碼來源:base_memory.py

示例5: _make_graph

# 需要導入模塊: from tensorflow.contrib import slim [as 別名]
# 或者: from tensorflow.contrib.slim import conv2d_in_plane [as 別名]
def _make_graph(self):
        self.logger.info("Generating training graph on {} GPUs ...".format(self.cfg.num_gpus))

        weights_initializer = slim.xavier_initializer()
        biases_initializer = tf.constant_initializer(0.)
        biases_regularizer = tf.no_regularizer
        weights_regularizer = tf.contrib.layers.l2_regularizer(self.cfg.weight_decay)

        tower_grads = []
        with tf.variable_scope(tf.get_variable_scope()):
            for i in range(self.cfg.num_gpus):
                with tf.device('/gpu:%d' % i):
                    with tf.name_scope('tower_%d' % i) as name_scope:
                        # Force all Variables to reside on the CPU.
                        with slim.arg_scope([slim.model_variable, slim.variable], device='/device:CPU:0'):
                            with slim.arg_scope([slim.conv2d, slim.conv2d_in_plane, \
                                                 slim.conv2d_transpose, slim.separable_conv2d,
                                                 slim.fully_connected],
                                                weights_regularizer=weights_regularizer,
                                                biases_regularizer=biases_regularizer,
                                                weights_initializer=weights_initializer,
                                                biases_initializer=biases_initializer):
                                # loss over single GPU
                                self.net.make_network(is_train=True)
                                if i == self.cfg.num_gpus - 1:
                                    loss = self.net.get_loss(include_wd=True)
                                else:
                                    loss = self.net.get_loss()
                                self._input_list.append( self.net.get_inputs() )

                        tf.get_variable_scope().reuse_variables()

                        if i == 0:
                            if self.cfg.num_gpus > 1 and self.cfg.bn_train is True:
                                self.logger.warning("BN is calculated only on single GPU.")
                            extra_update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS, name_scope)
                            with tf.control_dependencies(extra_update_ops):
                                grads = self._optimizer.compute_gradients(loss)
                        else:
                            grads = self._optimizer.compute_gradients(loss)
                        final_grads = []
                        with tf.variable_scope('Gradient_Mult') as scope:
                            for grad, var in grads:
                                final_grads.append((grad, var))
                        tower_grads.append(final_grads)

        if len(tower_grads) > 1:
            grads = average_gradients(tower_grads)
        else:
            grads = tower_grads[0]

        apply_gradient_op = self._optimizer.apply_gradients(grads)
        train_op = tf.group(apply_gradient_op, *extra_update_ops)

        return train_op 
開發者ID:mks0601,項目名稱:PoseFix_RELEASE,代碼行數:57,代碼來源:base.py


注:本文中的tensorflow.contrib.slim.conv2d_in_plane方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。