本文整理匯總了Python中tensorflow.contrib.slim.assign_from_checkpoint_fn方法的典型用法代碼示例。如果您正苦於以下問題:Python slim.assign_from_checkpoint_fn方法的具體用法?Python slim.assign_from_checkpoint_fn怎麽用?Python slim.assign_from_checkpoint_fn使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.contrib.slim
的用法示例。
在下文中一共展示了slim.assign_from_checkpoint_fn方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: load_ckpt
# 需要導入模塊: from tensorflow.contrib import slim [as 別名]
# 或者: from tensorflow.contrib.slim import assign_from_checkpoint_fn [as 別名]
def load_ckpt(ckpt_name, var_scope_name, scope, constructor, input_tensor, label_offset, load_weights, **kwargs):
"""
Arguments
ckpt_name file name of the checkpoint
var_scope_name name of the variable scope
scope arg_scope
constructor constructor of the model
input_tensor tensor of input image
label_offset whether it is 1000 classes or 1001 classes, if it is 1001, remove class 0
load_weights whether to load weights
kwargs
is_training
create_aux_logits
"""
with slim.arg_scope(scope):
logits, endpoints = constructor(\
input_tensor, num_classes=1000+label_offset, \
scope=var_scope_name, **kwargs)
if load_weights:
init_fn = slim.assign_from_checkpoint_fn(\
ckpt_name, slim.get_model_variables(var_scope_name))
init_fn(K.get_session())
return logits, endpoints
示例2: _get_init_fn
# 需要導入模塊: from tensorflow.contrib import slim [as 別名]
# 或者: from tensorflow.contrib.slim import assign_from_checkpoint_fn [as 別名]
def _get_init_fn():
vgg_checkpoint_path = "vgg_19.ckpt"
if tf.gfile.IsDirectory(vgg_checkpoint_path):
checkpoint_path = tf.train.latest_checkpoint(vgg_checkpoint_path)
else:
checkpoint_path = vgg_checkpoint_path
variables_to_restore = []
for var in slim.get_model_variables():
tf.logging.info('model_var: %s' % var)
excluded = False
for exclusion in ['vgg_19/fc']:
if var.op.name.startswith(exclusion):
excluded = True
tf.logging.info('exclude:%s' % exclusion)
break
if not excluded:
variables_to_restore.append(var)
tf.logging.info('Fine-tuning from %s' % checkpoint_path)
return slim.assign_from_checkpoint_fn(
checkpoint_path,
variables_to_restore,
ignore_missing_vars=True)
示例3: get_init_fn
# 需要導入模塊: from tensorflow.contrib import slim [as 別名]
# 或者: from tensorflow.contrib.slim import assign_from_checkpoint_fn [as 別名]
def get_init_fn(checkpoints_dir, model_name='inception_v1.ckpt'):
"""Returns a function run by the chief worker to warm-start the training.
"""
checkpoint_exclude_scopes=["InceptionV1/Logits", "InceptionV1/AuxLogits"]
exclusions = [scope.strip() for scope in checkpoint_exclude_scopes]
variables_to_restore = []
for var in slim.get_model_variables():
excluded = False
for exclusion in exclusions:
if var.op.name.startswith(exclusion):
excluded = True
break
if not excluded:
variables_to_restore.append(var)
return slim.assign_from_checkpoint_fn(
os.path.join(checkpoints_dir, model_name),
variables_to_restore)
示例4: get_init_fn
# 需要導入模塊: from tensorflow.contrib import slim [as 別名]
# 或者: from tensorflow.contrib.slim import assign_from_checkpoint_fn [as 別名]
def get_init_fn(self, checkpoint_path):
"""Returns a function run by the chief worker to warm-start the training."""
checkpoint_exclude_scopes=["InceptionV4/Logits", "InceptionV4/AuxLogits"]
exclusions = [scope.strip() for scope in checkpoint_exclude_scopes]
variables_to_restore = []
for var in slim.get_model_variables():
excluded = False
for exclusion in exclusions:
if var.op.name.startswith(exclusion):
excluded = True
break
if not excluded:
variables_to_restore.append(var)
return slim.assign_from_checkpoint_fn(
checkpoint_path,
variables_to_restore)
示例5: get_model_init_fn
# 需要導入模塊: from tensorflow.contrib import slim [as 別名]
# 或者: from tensorflow.contrib.slim import assign_from_checkpoint_fn [as 別名]
def get_model_init_fn(train_logdir,
tf_initial_checkpoint,
initialize_last_layer,
last_layers,
ignore_missing_vars=False):
"""Gets the function initializing model variables from a checkpoint.
Args:
train_logdir: Log directory for training.
tf_initial_checkpoint: TensorFlow checkpoint for initialization.
initialize_last_layer: Initialize last layer or not.
last_layers: Last layers of the model.
ignore_missing_vars: Ignore missing variables in the checkpoint.
Returns:
Initialization function.
"""
if tf_initial_checkpoint is None:
tf.logging.info('Not initializing the model from a checkpoint.')
return None
if tf.train.latest_checkpoint(train_logdir):
tf.logging.info('Ignoring initialization; other checkpoint exists')
return None
tf.logging.info('Initializing model from path: %s', tf_initial_checkpoint)
# Variables that will not be restored.
exclude_list = ['global_step']
if not initialize_last_layer:
exclude_list.extend(last_layers)
variables_to_restore = slim.get_variables_to_restore(exclude=exclude_list)
if variables_to_restore:
return slim.assign_from_checkpoint_fn(
tf_initial_checkpoint,
variables_to_restore,
ignore_missing_vars=ignore_missing_vars)
return None
示例6: load_ckpt
# 需要導入模塊: from tensorflow.contrib import slim [as 別名]
# 或者: from tensorflow.contrib.slim import assign_from_checkpoint_fn [as 別名]
def load_ckpt(ckpt_name, var_scope_name, scope, constructor, input_tensor, label_offset, load_weights, **kwargs):
""" kwargs are is_training and create_aux_logits """
print(var_scope_name)
with slim.arg_scope(scope):
logits, endpoints = constructor(\
input_tensor, num_classes=1000+label_offset, \
scope=var_scope_name, **kwargs)
if load_weights:
init_fn = slim.assign_from_checkpoint_fn(\
ckpt_name, slim.get_model_variables(var_scope_name))
init_fn(K.get_session())
return logits, endpoints
示例7: main
# 需要導入模塊: from tensorflow.contrib import slim [as 別名]
# 或者: from tensorflow.contrib.slim import assign_from_checkpoint_fn [as 別名]
def main():
model = config.get('config', 'model')
yolo = importlib.import_module('model.' + model)
width = config.getint(model, 'width')
height = config.getint(model, 'height')
with tf.Session() as sess:
image = tf.placeholder(tf.float32, [1, height, width, 3], name='image')
builder = yolo.Builder(args, config)
builder(image)
global_step = tf.contrib.framework.get_or_create_global_step()
model_path = tf.train.latest_checkpoint(utils.get_logdir(config))
tf.logging.info('load ' + model_path)
slim.assign_from_checkpoint_fn(model_path, tf.global_variables())(sess)
tf.logging.info('global_step=%d' % sess.run(global_step))
path = os.path.expanduser(os.path.expandvars(args.path))
if os.path.isfile(path):
detect(sess, builder.model, builder.names, image, path)
plt.show()
else:
for dirpath, _, filenames in os.walk(path):
for filename in filenames:
if os.path.splitext(filename)[-1].lower() in args.exts:
_path = os.path.join(dirpath, filename)
print(_path)
detect(sess, builder.model, builder.names, image, _path)
plt.show()
示例8: main
# 需要導入模塊: from tensorflow.contrib import slim [as 別名]
# 或者: from tensorflow.contrib.slim import assign_from_checkpoint_fn [as 別名]
def main():
model = config.get('config', 'model')
yolo = importlib.import_module('model.' + model)
width = config.getint(model, 'width')
height = config.getint(model, 'height')
preprocess = getattr(importlib.import_module('detect'), args.preprocess)
with tf.Session() as sess:
ph_image = tf.placeholder(tf.float32, [1, height, width, 3], name='ph_image')
builder = yolo.Builder(args, config)
builder(ph_image)
global_step = tf.contrib.framework.get_or_create_global_step()
model_path = tf.train.latest_checkpoint(utils.get_logdir(config))
tf.logging.info('load ' + model_path)
slim.assign_from_checkpoint_fn(model_path, tf.global_variables())(sess)
tf.logging.info('global_step=%d' % sess.run(global_step))
tensors = [builder.model.conf, builder.model.xy_min, builder.model.xy_max]
tensors = [tf.check_numerics(t, t.op.name) for t in tensors]
cap = cv2.VideoCapture(0)
try:
while True:
ret, image_bgr = cap.read()
assert ret
image_height, image_width, _ = image_bgr.shape
scale = [image_width / builder.model.cell_width, image_height / builder.model.cell_height]
image_rgb = cv2.cvtColor(image_bgr, cv2.COLOR_BGR2RGB)
image_std = np.expand_dims(preprocess(cv2.resize(image_rgb, (width, height))).astype(np.float32), 0)
feed_dict = {ph_image: image_std}
conf, xy_min, xy_max = sess.run(tensors, feed_dict)
boxes = utils.postprocess.non_max_suppress(conf[0], xy_min[0], xy_max[0], args.threshold, args.threshold_iou)
for _conf, _xy_min, _xy_max in boxes:
index = np.argmax(_conf)
if _conf[index] > args.threshold:
_xy_min = (_xy_min * scale).astype(np.int)
_xy_max = (_xy_max * scale).astype(np.int)
cv2.rectangle(image_bgr, tuple(_xy_min), tuple(_xy_max), (255, 0, 255), 3)
cv2.putText(image_bgr, builder.names[index] + ' (%.1f%%)' % (_conf[index] * 100), tuple(_xy_min), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (255, 255, 255), 2)
cv2.imshow('detection', image_bgr)
cv2.waitKey(1)
finally:
cv2.destroyAllWindows()
cap.release()
示例9: use_inceptionv4
# 需要導入模塊: from tensorflow.contrib import slim [as 別名]
# 或者: from tensorflow.contrib.slim import assign_from_checkpoint_fn [as 別名]
def use_inceptionv4(self):
image_size = inception.inception_v4.default_image_size
img_path = "../../data/misec_images/EnglishCockerSpaniel_simon.jpg"
checkpoint_path = "../../data/trained_models/inception_v4/inception_v4.ckpt"
with tf.Graph().as_default():
image_string = tf.read_file(img_path)
image = tf.image.decode_jpeg(image_string, channels=3)
processed_image = inception_preprocessing.preprocess_image(image, image_size, image_size, is_training=False)
processed_images = tf.expand_dims(processed_image, 0)
# Create the model, use the default arg scope to configure the batch norm parameters.
with slim.arg_scope(inception.inception_v4_arg_scope()):
logits, _ = inception.inception_v4(processed_images, num_classes=1001, is_training=False)
probabilities = tf.nn.softmax(logits)
init_fn = slim.assign_from_checkpoint_fn(
checkpoint_path,
slim.get_model_variables('InceptionV4'))
with tf.Session() as sess:
init_fn(sess)
np_image, probabilities = sess.run([image, probabilities])
probabilities = probabilities[0, 0:]
sorted_inds = [i[0] for i in sorted(enumerate(-probabilities), key=lambda x:x[1])]
self.disp_names(sorted_inds,probabilities)
plt.figure()
plt.imshow(np_image.astype(np.uint8))
plt.axis('off')
plt.title(img_path)
plt.show()
return
示例10: use_vgg16
# 需要導入模塊: from tensorflow.contrib import slim [as 別名]
# 或者: from tensorflow.contrib.slim import assign_from_checkpoint_fn [as 別名]
def use_vgg16(self):
with tf.Graph().as_default():
image_size = vgg.vgg_16.default_image_size
img_path = "../../data/misec_images/First_Student_IC_school_bus_202076.jpg"
checkpoint_path = "../../data/trained_models/vgg16/vgg_16.ckpt"
image_string = tf.read_file(img_path)
image = tf.image.decode_jpeg(image_string, channels=3)
processed_image = vgg_preprocessing.preprocess_image(image, image_size, image_size, is_training=False)
processed_images = tf.expand_dims(processed_image, 0)
# Create the model, use the default arg scope to configure the batch norm parameters.
with slim.arg_scope(vgg.vgg_arg_scope()):
# 1000 classes instead of 1001.
logits, _ = vgg.vgg_16(processed_images, num_classes=1000, is_training=False)
probabilities = tf.nn.softmax(logits)
init_fn = slim.assign_from_checkpoint_fn(
checkpoint_path,
slim.get_model_variables('vgg_16'))
with tf.Session() as sess:
init_fn(sess)
np_image, probabilities = sess.run([image, probabilities])
probabilities = probabilities[0, 0:]
sorted_inds = [i[0] for i in sorted(enumerate(-probabilities), key=lambda x:x[1])]
self.disp_names(sorted_inds,probabilities,include_background=False)
plt.figure()
plt.imshow(np_image.astype(np.uint8))
plt.axis('off')
plt.title(img_path)
plt.show()
return
示例11: __init__
# 需要導入模塊: from tensorflow.contrib import slim [as 別名]
# 或者: from tensorflow.contrib.slim import assign_from_checkpoint_fn [as 別名]
def __init__(self, model_path, batch_size):
self.batch_size = batch_size
latest_checkpoint = tf.train.latest_checkpoint(checkpoint_dir=os.path.join(model_path, 'train'))
step = int(os.path.basename(latest_checkpoint).split('-')[1])
default_params = get_arguments()
#flags = Namespace(load_and_save_params(vars(default_params), model_path))
flags = Namespace(load_and_save_params(default_params=dict(), exp_dir=model_path))
image_size = get_image_size(flags.data_dir)
with tf.Graph().as_default():
pretrain_images_pl, pretrain_labels_pl = placeholder_inputs(
batch_size=batch_size, image_size=image_size, scope='inputs/pretrain')
logits = build_feat_extract_pretrain_graph(pretrain_images_pl, flags, is_training=False)
self.pretrain_images_pl = pretrain_images_pl
self.pretrain_labels_pl = pretrain_labels_pl
init_fn = slim.assign_from_checkpoint_fn(
latest_checkpoint,
slim.get_model_variables('Model'))
config = tf.ConfigProto(allow_soft_placement=True)
config.gpu_options.allow_growth = True
self.sess = tf.Session(config=config)
# Run init before loading the weights
self.sess.run(tf.global_variables_initializer())
# Load weights
init_fn(self.sess)
self.flags = flags
self.logits = logits
self.logits_size = self.logits.get_shape().as_list()[-1]
self.step = step
示例12: __init__
# 需要導入模塊: from tensorflow.contrib import slim [as 別名]
# 或者: from tensorflow.contrib.slim import assign_from_checkpoint_fn [as 別名]
def __init__(self, model_path, batch_size):
self.batch_size = batch_size
latest_checkpoint = tf.train.latest_checkpoint(checkpoint_dir=os.path.join(model_path, 'train'))
step = int(os.path.basename(latest_checkpoint).split('-')[1])
flags = Namespace(load_and_save_params(default_params=dict(), exp_dir=model_path))
image_size = get_image_size(flags.data_dir)
with tf.Graph().as_default():
pretrain_images_pl, pretrain_labels_pl = placeholder_inputs(
batch_size=batch_size, image_size=image_size, scope='inputs/pretrain')
logits = build_feat_extract_pretrain_graph(pretrain_images_pl, flags, is_training=False)
self.pretrain_images_pl = pretrain_images_pl
self.pretrain_labels_pl = pretrain_labels_pl
init_fn = slim.assign_from_checkpoint_fn(
latest_checkpoint,
slim.get_model_variables('Model'))
config = tf.ConfigProto(allow_soft_placement=True)
config.gpu_options.allow_growth = True
self.sess = tf.Session(config=config)
# Run init before loading the weights
self.sess.run(tf.global_variables_initializer())
# Load weights
init_fn(self.sess)
self.flags = flags
self.logits = logits
self.logits_size = self.logits.get_shape().as_list()[-1]
self.step = step
示例13: train
# 需要導入模塊: from tensorflow.contrib import slim [as 別名]
# 或者: from tensorflow.contrib.slim import assign_from_checkpoint_fn [as 別名]
def train(self):
img_size = [self.image_height, self.image_width, self.image_depth]
train_batch = tf.train.shuffle_batch([read_tfrecord(self.train_file, img_size)],
batch_size = self.train_batch_size,
capacity = 3000,
num_threads = 2,
min_after_dequeue = 1000)
test_batch = tf.train.shuffle_batch([read_tfrecord(self.test_file, img_size)],
batch_size = self.test_batch_size,
capacity = 500,
num_threads = 2,
min_after_dequeue = 300)
init = tf.global_variables_initializer()
init_fn = slim.assign_from_checkpoint_fn("resnet_v2_50.ckpt", slim.get_model_variables('resnet_v2'))
saver = tf.train.Saver()
with tf.Session() as sess:
sess.run(init)
init_fn(sess)
train_writer = tf.summary.FileWriter(self.log_dir + "/train", sess.graph)
test_writer = tf.summary.FileWriter(self.log_dir + "/test", sess.graph)
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(sess=sess, coord=coord)
inputs_test, outputs_gt_test = build_img_pair(sess.run(test_batch))
for iter in range(self.max_iteration):
inputs_train, outputs_gt_train = build_img_pair(sess.run(train_batch))
# train with dynamic learning rate
if iter <= 500:
self.train_step.run({self.input_data:inputs_train, self.gt:outputs_gt_train,
self.learning_rate:1e-3, self.batch_size:self.train_batch_size})
elif iter <= self.max_iteration - 1000:
self.train_step.run({self.input_data:inputs_train, self.gt:outputs_gt_train,
self.learning_rate:0.5e-3, self.batch_size:self.train_batch_size})
else:
self.train_step.run({self.input_data:inputs_train, self.gt:outputs_gt_train,
self.learning_rate:1e-4, self.batch_size:self.train_batch_size})
# print training loss and test loss
if iter%10 == 0:
summary_train = sess.run(self.summary, {self.input_data:inputs_train, self.gt:outputs_gt_train,
self.batch_size:self.train_batch_size})
train_writer.add_summary(summary_train, iter)
train_writer.flush()
summary_test = sess.run(self.summary, {self.input_data:inputs_test, self.gt:outputs_gt_test,
self.batch_size:self.test_batch_size})
test_writer.add_summary(summary_test, iter)
test_writer.flush()
# record training loss and test loss
if iter%10 == 0:
train_loss = self.cross_entropy.eval({self.input_data:inputs_train, self.gt:outputs_gt_train,
self.batch_size:self.train_batch_size})
test_loss = self.cross_entropy.eval({self.input_data:inputs_test, self.gt:outputs_gt_test,
self.batch_size:self.test_batch_size})
print("iter step %d trainning batch loss %f"%(iter, train_loss))
print("iter step %d test loss %f\n"%(iter, test_loss))
# record model
if iter%100 == 0:
saver.save(sess, self.log_dir + "/model.ckpt", global_step=iter)
coord.request_stop()
coord.join(threads)
示例14: train
# 需要導入模塊: from tensorflow.contrib import slim [as 別名]
# 或者: from tensorflow.contrib.slim import assign_from_checkpoint_fn [as 別名]
def train(self):
img_size = [self.image_height, self.image_width, self.image_depth]
train_batch = tf.train.shuffle_batch([read_tfrecord(self.train_file, img_size)],
batch_size = self.train_batch_size,
capacity = 2000,
num_threads = 2,
min_after_dequeue = 1000)
test_batch = tf.train.shuffle_batch([read_tfrecord(self.test_file, img_size)],
batch_size = self.test_batch_size,
capacity = 500,
num_threads = 2,
min_after_dequeue = 300)
init = tf.global_variables_initializer()
init_fn = slim.assign_from_checkpoint_fn("vgg_16.ckpt", slim.get_model_variables('vgg_16'))
saver = tf.train.Saver()
with tf.Session() as sess:
sess.run(init)
init_fn(sess)
train_writer = tf.summary.FileWriter(self.log_dir + "/train", sess.graph)
test_writer = tf.summary.FileWriter(self.log_dir + "/test", sess.graph)
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(sess=sess, coord=coord)
inputs_test, outputs_gt_test = build_img_pair(sess.run(test_batch))
for iter in range(self.max_iteration):
inputs_train, outputs_gt_train = build_img_pair(sess.run(train_batch))
# train with dynamic learning rate
if iter <= 500:
self.train_step.run({self.input_data:inputs_train, self.gt:outputs_gt_train, self.is_training:True,
self.learning_rate:1e-4})
elif iter <= self.max_iteration - 1000:
self.train_step.run({self.input_data:inputs_train, self.gt:outputs_gt_train, self.is_training:True,
self.learning_rate:0.5e-4})
else:
self.train_step.run({self.input_data:inputs_train, self.gt:outputs_gt_train, self.is_training:True,
self.learning_rate:1e-5})
# print training loss and test loss
if iter%10 == 0:
summary_train = sess.run(self.summary, {self.input_data:inputs_train, self.gt:outputs_gt_train,
self.is_training:False})
train_writer.add_summary(summary_train, iter)
train_writer.flush()
summary_test = sess.run(self.summary, {self.input_data:inputs_test, self.gt:outputs_gt_test,
self.is_training:False})
test_writer.add_summary(summary_test, iter)
test_writer.flush()
# record training loss and test loss
if iter%10 == 0:
train_loss = self.cross_entropy.eval({self.input_data:inputs_train, self.gt:outputs_gt_train,
self.is_training:False})
test_loss = self.cross_entropy.eval({self.input_data:inputs_test, self.gt:outputs_gt_test,
self.is_training:False})
print("iter step %d trainning batch loss %f"%(iter, train_loss))
print("iter step %d test loss %f\n"%(iter, test_loss))
# record model
if iter%100 == 0:
saver.save(sess, self.log_dir + "/model.ckpt", global_step=iter)
coord.request_stop()
coord.join(threads)
示例15: train
# 需要導入模塊: from tensorflow.contrib import slim [as 別名]
# 或者: from tensorflow.contrib.slim import assign_from_checkpoint_fn [as 別名]
def train(self):
img_size = [self.image_height, self.image_width, self.image_depth]
train_batch = tf.train.shuffle_batch([read_tfrecord(self.train_file, img_size)],
batch_size = self.train_batch_size,
capacity = 2000,
num_threads = 2,
min_after_dequeue = 1000)
test_batch = tf.train.shuffle_batch([read_tfrecord(self.test_file, img_size)],
batch_size = self.test_batch_size,
capacity = 500,
num_threads = 2,
min_after_dequeue = 300)
init = tf.global_variables_initializer()
init_fn = slim.assign_from_checkpoint_fn("vgg_16.ckpt", slim.get_model_variables('vgg_16'))
saver = tf.train.Saver()
with tf.Session() as sess:
sess.run(init)
init_fn(sess)
train_writer = tf.summary.FileWriter(self.log_dir + "/train", sess.graph)
test_writer = tf.summary.FileWriter(self.log_dir + "/test", sess.graph)
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(sess=sess, coord=coord)
inputs_test, outputs_gt_test = build_img_pair(sess.run(test_batch))
for iter in range(self.max_iteration):
inputs_train, outputs_gt_train = build_img_pair(sess.run(train_batch))
# train with dynamic learning rate
if iter <= 500:
self.train_step.run({self.input_data:inputs_train, self.gt:outputs_gt_train,
self.learning_rate:1e-4, self.is_training:True})
elif iter <= self.max_iteration - 1000:
self.train_step.run({self.input_data:inputs_train, self.gt:outputs_gt_train,
self.learning_rate:0.5e-4, self.is_training:True})
else:
self.train_step.run({self.input_data:inputs_train, self.gt:outputs_gt_train,
self.learning_rate:1e-5, self.is_training:True})
# print training loss and test loss
if iter%10 == 0:
summary_train = sess.run(self.summary, {self.input_data:inputs_train, self.gt:outputs_gt_train, self.is_training:False})
train_writer.add_summary(summary_train, iter)
train_writer.flush()
summary_test = sess.run(self.summary, {self.input_data:inputs_test, self.gt:outputs_gt_test, self.is_training:False})
test_writer.add_summary(summary_test, iter)
test_writer.flush()
# record training loss and test loss
if iter%10 == 0:
train_loss = self.cross_entropy.eval({self.input_data:inputs_train, self.gt:outputs_gt_train, self.is_training:False})
test_loss = self.cross_entropy.eval({self.input_data:inputs_test, self.gt:outputs_gt_test, self.is_training:False})
print("iter step %d trainning batch loss %f"%(iter, train_loss))
print("iter step %d test loss %f\n"%(iter, test_loss))
# record model
if iter%100 == 0:
saver.save(sess, self.log_dir + "/model.ckpt", global_step=iter)
coord.request_stop()
coord.join(threads)