當前位置: 首頁>>代碼示例>>Python>>正文


Python slim.assign_from_checkpoint方法代碼示例

本文整理匯總了Python中tensorflow.contrib.slim.assign_from_checkpoint方法的典型用法代碼示例。如果您正苦於以下問題:Python slim.assign_from_checkpoint方法的具體用法?Python slim.assign_from_checkpoint怎麽用?Python slim.assign_from_checkpoint使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.contrib.slim的用法示例。


在下文中一共展示了slim.assign_from_checkpoint方法的6個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: create_init_fn_to_restore

# 需要導入模塊: from tensorflow.contrib import slim [as 別名]
# 或者: from tensorflow.contrib.slim import assign_from_checkpoint [as 別名]
def create_init_fn_to_restore(self, master_checkpoint, inception_checkpoint):
    """Creates an init operations to restore weights from various checkpoints.

    Args:
      master_checkpoint: path to a checkpoint which contains all weights for
        the whole model.
      inception_checkpoint: path to a checkpoint which contains weights for the
        inception part only.

    Returns:
      a function to run initialization ops.
    """
    all_assign_ops = []
    all_feed_dict = {}

    def assign_from_checkpoint(variables, checkpoint):
      logging.info('Request to re-store %d weights from %s',
                   len(variables), checkpoint)
      if not variables:
        logging.error('Can\'t find any variables to restore.')
        sys.exit(1)
      assign_op, feed_dict = slim.assign_from_checkpoint(checkpoint, variables)
      all_assign_ops.append(assign_op)
      all_feed_dict.update(feed_dict)

    if master_checkpoint:
      assign_from_checkpoint(utils.variables_to_restore(), master_checkpoint)

    if inception_checkpoint:
      variables = utils.variables_to_restore(
          'AttentionOcr_v1/conv_tower_fn/INCE', strip_scope=True)
      assign_from_checkpoint(variables, inception_checkpoint)

    def init_assign_fn(sess):
      logging.info('Restoring checkpoint(s)')
      sess.run(all_assign_ops, all_feed_dict)

    return init_assign_fn 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:40,代碼來源:model.py

示例2: load_ckpt

# 需要導入模塊: from tensorflow.contrib import slim [as 別名]
# 或者: from tensorflow.contrib.slim import assign_from_checkpoint [as 別名]
def load_ckpt(sess, model_dir, variables_to_restore=None):
    ckpt = tf.train.get_checkpoint_state(model_dir)
    model_path = ckpt.model_checkpoint_path
    if variables_to_restore is None:
        variables_to_restore = slim.get_variables_to_restore()
    restore_op, restore_fd = slim.assign_from_checkpoint(
        model_path, variables_to_restore)
    sess.run(restore_op, feed_dict=restore_fd)
    print(f'{model_path} loaded') 
開發者ID:bm2-lab,項目名稱:DeepCRISPR,代碼行數:11,代碼來源:deepcrispr_src.py

示例3: create_init_fn_to_restore

# 需要導入模塊: from tensorflow.contrib import slim [as 別名]
# 或者: from tensorflow.contrib.slim import assign_from_checkpoint [as 別名]
def create_init_fn_to_restore(self, master_checkpoint,
      inception_checkpoint=None):
    """Creates an init operations to restore weights from various checkpoints.

    Args:
      master_checkpoint: path to a checkpoint which contains all weights for
        the whole model.
      inception_checkpoint: path to a checkpoint which contains weights for the
        inception part only.

    Returns:
      a function to run initialization ops.
    """
    all_assign_ops = []
    all_feed_dict = {}

    def assign_from_checkpoint(variables, checkpoint):
      logging.info('Request to re-store %d weights from %s',
                   len(variables), checkpoint)
      if not variables:
        logging.error('Can\'t find any variables to restore.')
        sys.exit(1)
      assign_op, feed_dict = slim.assign_from_checkpoint(checkpoint, variables)
      all_assign_ops.append(assign_op)
      all_feed_dict.update(feed_dict)

    if master_checkpoint:
      assign_from_checkpoint(utils.variables_to_restore(), master_checkpoint)

    if inception_checkpoint:
      variables = utils.variables_to_restore(
          'AttentionOcr_v1/conv_tower_fn/INCE', strip_scope=True)
      assign_from_checkpoint(variables, inception_checkpoint)

    def init_assign_fn(sess):
      logging.info('Restoring checkpoint(s)')
      sess.run(all_assign_ops, all_feed_dict)

    return init_assign_fn 
開發者ID:sshleifer,項目名稱:object_detection_kitti,代碼行數:41,代碼來源:model.py

示例4: load

# 需要導入模塊: from tensorflow.contrib import slim [as 別名]
# 或者: from tensorflow.contrib.slim import assign_from_checkpoint [as 別名]
def load(self, sess):
        model_saver = self.get_saver()
        ckpt = tf.train.latest_checkpoint(str(self.exp_dir), latest_filename='%s_ckpt' % self.scope)
        if ckpt is None:
            print('[ %s ] No ckpt found...' % self.scope)
            return
        print('Loading %s' % str(ckpt))
        init_op, init_feed = slim.assign_from_checkpoint(model_path=ckpt, var_list=self.vars(), ignore_missing_vars=True)
        sess.run(init_op, init_feed)
        # model_saver.restore(sess, ckpt)
        return 
開發者ID:gaxler,項目名稱:dataset_agnostic_segmentation,代碼行數:13,代碼來源:__init__.py

示例5: _create_encoder

# 需要導入模塊: from tensorflow.contrib import slim [as 別名]
# 或者: from tensorflow.contrib.slim import assign_from_checkpoint [as 別名]
def _create_encoder(preprocess_fn, network_factory, image_shape, batch_size=32,
                    session=None, checkpoint_path=None, read_from_file=False):
    if read_from_file:
        num_channels = image_shape[-1] if len(image_shape) == 3 else 1
        input_var = tf.placeholder(tf.string, (None, ))
        image_var = tf.map_fn(
            lambda x: tf.image.decode_jpeg(
                tf.read_file(x), channels=num_channels),
            input_var, back_prop=False, dtype=tf.uint8)
        image_var = tf.image.resize_images(image_var, image_shape[:2])
    else:
        input_var = tf.placeholder(tf.uint8, (None, ) + image_shape)
        image_var = input_var

    preprocessed_image_var = tf.map_fn(
        lambda x: preprocess_fn(x, is_training=False),
        image_var, back_prop=False, dtype=tf.float32)

    feature_var, _ = network_factory(preprocessed_image_var)
    feature_dim = feature_var.get_shape().as_list()[-1]

    if session is None:
        session = tf.Session()
    if checkpoint_path is not None:
        tf.train.get_or_create_global_step()
        init_assign_op, init_feed_dict = slim.assign_from_checkpoint(
            checkpoint_path, slim.get_model_variables())
        session.run(init_assign_op, feed_dict=init_feed_dict)

    def encoder(data_x):
        out = np.zeros((len(data_x), feature_dim), np.float32)
        queued_trainer.run_in_batches(
            lambda x: session.run(feature_var, feed_dict=x),
            {input_var: data_x}, out, batch_size)
        return out

    return encoder 
開發者ID:nwojke,項目名稱:cosine_metric_learning,代碼行數:39,代碼來源:train_app.py

示例6: create_init_fn_to_restore

# 需要導入模塊: from tensorflow.contrib import slim [as 別名]
# 或者: from tensorflow.contrib.slim import assign_from_checkpoint [as 別名]
def create_init_fn_to_restore(self, master_checkpoint,
                                inception_checkpoint=None):
    """Creates an init operations to restore weights from various checkpoints.

    Args:
      master_checkpoint: path to a checkpoint which contains all weights for
        the whole model.
      inception_checkpoint: path to a checkpoint which contains weights for the
        inception part only.

    Returns:
      a function to run initialization ops.
    """
    all_assign_ops = []
    all_feed_dict = {}

    def assign_from_checkpoint(variables, checkpoint):
      logging.info('Request to re-store %d weights from %s',
                   len(variables), checkpoint)
      if not variables:
        logging.error('Can\'t find any variables to restore.')
        sys.exit(1)
      assign_op, feed_dict = slim.assign_from_checkpoint(checkpoint, variables)
      all_assign_ops.append(assign_op)
      all_feed_dict.update(feed_dict)

    logging.info('variables_to_restore:\n%s' % utils.variables_to_restore().keys())
    logging.info('moving_average_variables:\n%s' % [v.op.name for v in tf.moving_average_variables()])
    logging.info('trainable_variables:\n%s' % [v.op.name for v in tf.trainable_variables()])
    if master_checkpoint:
      assign_from_checkpoint(utils.variables_to_restore(), master_checkpoint)

    if inception_checkpoint:
      variables = utils.variables_to_restore(
        'AttentionOcr_v1/conv_tower_fn/INCE', strip_scope=True)
      assign_from_checkpoint(variables, inception_checkpoint)

    def init_assign_fn(sess):
      logging.info('Restoring checkpoint(s)')
      sess.run(all_assign_ops, all_feed_dict)

    return init_assign_fn 
開發者ID:rky0930,項目名稱:yolo_v2,代碼行數:44,代碼來源:model.py


注:本文中的tensorflow.contrib.slim.assign_from_checkpoint方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。