當前位置: 首頁>>代碼示例>>Python>>正文


Python slim.arg_scope方法代碼示例

本文整理匯總了Python中tensorflow.contrib.slim.arg_scope方法的典型用法代碼示例。如果您正苦於以下問題:Python slim.arg_scope方法的具體用法?Python slim.arg_scope怎麽用?Python slim.arg_scope使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.contrib.slim的用法示例。


在下文中一共展示了slim.arg_scope方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __call__

# 需要導入模塊: from tensorflow.contrib import slim [as 別名]
# 或者: from tensorflow.contrib.slim import arg_scope [as 別名]
def __call__(self, x_input, return_logits=False):
        """Constructs model and return probabilities for given input."""
        reuse = True if self.built else None
        with slim.arg_scope(inception.inception_v3_arg_scope()):
            # Inception preprocessing uses [-1, 1]-scaled input.
            x_input = x_input * 2.0 - 1.0
            _, end_points = inception.inception_v3(
                x_input, num_classes=self.nb_classes, is_training=False,
                reuse=reuse)
        self.built = True
        self.logits = end_points['Logits']
        # Strip off the extra reshape op at the output
        self.probs = end_points['Predictions'].op.inputs[0]
        if return_logits:
            return self.logits
        else:
            return self.probs 
開發者ID:StephanZheng,項目名稱:neural-fingerprinting,代碼行數:19,代碼來源:test_imagenet_attacks.py

示例2: conv_tower_fn

# 需要導入模塊: from tensorflow.contrib import slim [as 別名]
# 或者: from tensorflow.contrib.slim import arg_scope [as 別名]
def conv_tower_fn(self, images, is_training=True, reuse=None):
    """Computes convolutional features using the InceptionV3 model.

    Args:
      images: A tensor of shape [batch_size, height, width, channels].
      is_training: whether is training or not.
      reuse: whether or not the network and its variables should be reused. To
        be able to reuse 'scope' must be given.

    Returns:
      A tensor of shape [batch_size, OH, OW, N], where OWxOH is resolution of
      output feature map and N is number of output features (depends on the
      network architecture).
    """
    mparams = self._mparams['conv_tower_fn']
    logging.debug('Using final_endpoint=%s', mparams.final_endpoint)
    with tf.variable_scope('conv_tower_fn/INCE'):
      if reuse:
        tf.get_variable_scope().reuse_variables()
      with slim.arg_scope(inception.inception_v3_arg_scope()):
        net, _ = inception.inception_v3_base(
            images, final_endpoint=mparams.final_endpoint)
      return net 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:25,代碼來源:model.py

示例3: model

# 需要導入模塊: from tensorflow.contrib import slim [as 別名]
# 或者: from tensorflow.contrib.slim import arg_scope [as 別名]
def model(image):
    image = mean_image_subtraction(image)
    with slim.arg_scope(vgg.vgg_arg_scope()):
        conv5_3 = vgg.vgg_16(image)

    rpn_conv = slim.conv2d(conv5_3, 512, 3)

    lstm_output = Bilstm(rpn_conv, 512, 128, 512, scope_name='BiLSTM')

    bbox_pred = lstm_fc(lstm_output, 512, 10 * 4, scope_name="bbox_pred")
    cls_pred = lstm_fc(lstm_output, 512, 10 * 2, scope_name="cls_pred")

    # transpose: (1, H, W, A x d) -> (1, H, WxA, d)
    cls_pred_shape = tf.shape(cls_pred)
    cls_pred_reshape = tf.reshape(cls_pred, [cls_pred_shape[0], cls_pred_shape[1], -1, 2])

    cls_pred_reshape_shape = tf.shape(cls_pred_reshape)
    cls_prob = tf.reshape(tf.nn.softmax(tf.reshape(cls_pred_reshape, [-1, cls_pred_reshape_shape[3]])),
                          [-1, cls_pred_reshape_shape[1], cls_pred_reshape_shape[2], cls_pred_reshape_shape[3]],
                          name="cls_prob")

    return bbox_pred, cls_pred, cls_prob 
開發者ID:zzzDavid,項目名稱:ICDAR-2019-SROIE,代碼行數:24,代碼來源:model_train.py

示例4: delf_attention

# 需要導入模塊: from tensorflow.contrib import slim [as 別名]
# 或者: from tensorflow.contrib.slim import arg_scope [as 別名]
def delf_attention(feature_map, config, is_training, arg_scope=None):
    with tf.variable_scope('attonly/attention/compute'):
        with slim.arg_scope(arg_scope):
            is_training = config['train_attention'] and is_training
            with slim.arg_scope([slim.conv2d, slim.batch_norm],
                                trainable=is_training):
                with slim.arg_scope([slim.batch_norm], is_training=is_training):
                    attention = slim.conv2d(
                            feature_map, 512, config['attention_kernel'], rate=1,
                            activation_fn=tf.nn.relu, scope='conv1')
                    attention = slim.conv2d(
                            attention, 1, config['attention_kernel'], rate=1,
                            activation_fn=None, normalizer_fn=None, scope='conv2')
                    attention = tf.nn.softplus(attention)
    if config['normalize_feature_map']:
        feature_map = tf.nn.l2_normalize(feature_map, -1)
    descriptor = tf.reduce_sum(feature_map*attention, axis=[1, 2])
    if config['normalize_average']:
        descriptor /= tf.reduce_sum(attention, axis=[1, 2])
    return descriptor 
開發者ID:ethz-asl,項目名稱:hierarchical_loc,代碼行數:22,代碼來源:layers.py

示例5: tower

# 需要導入模塊: from tensorflow.contrib import slim [as 別名]
# 或者: from tensorflow.contrib.slim import arg_scope [as 別名]
def tower(image, mode, config):
        image = image_normalization(image)
        if image.shape[-1] == 1:
            image = tf.tile(image, [1, 1, 1, 3])

        with slim.arg_scope(resnet.resnet_arg_scope()):
            is_training = config['train_backbone'] and (mode == Mode.TRAIN)
            with slim.arg_scope([slim.conv2d, slim.batch_norm], trainable=is_training):
                _, encoder = resnet.resnet_v1_50(image,
                                                 is_training=is_training,
                                                 global_pool=False,
                                                 scope='resnet_v1_50')
        feature_map = encoder['resnet_v1_50/block3']

        if config['use_attention']:
            descriptor = delf_attention(feature_map, config, mode == Mode.TRAIN,
                                        resnet.resnet_arg_scope())
        else:
            descriptor = tf.reduce_max(feature_map, [1, 2])

        if config['dimensionality_reduction']:
            descriptor = dimensionality_reduction(descriptor, config)
        return descriptor 
開發者ID:ethz-asl,項目名稱:hierarchical_loc,代碼行數:25,代碼來源:delf.py

示例6: _model

# 需要導入模塊: from tensorflow.contrib import slim [as 別名]
# 或者: from tensorflow.contrib.slim import arg_scope [as 別名]
def _model(self, inputs, mode, **config):
        image = image_normalization(inputs['image'])
        if image.shape[-1] == 1:
            image = tf.tile(image, [1, 1, 1, 3])
        if config['resize_input']:
            new_size = tf.to_int32(tf.round(
                    tf.to_float(tf.shape(image)[1:3]) / float(config['resize_input'])))
            image = tf.image.resize_images(image, new_size)

        is_training = config['train_backbone'] and (mode == Mode.TRAIN)
        with slim.arg_scope(mobilenet.training_scope(
                is_training=is_training, dropout_keep_prob=config['dropout_keep_prob'])):
            _, encoder = mobilenet.mobilenet(image, num_classes=None, base_only=True,
                                             depth_multiplier=config['depth_multiplier'],
                                             final_endpoint=config['encoder_endpoint'])
        feature_map = encoder[config['encoder_endpoint']]
        descriptor = vlad(feature_map, config, mode == Mode.TRAIN)
        if config['dimensionality_reduction']:
            descriptor = dimensionality_reduction(descriptor, config)
        return {'descriptor': descriptor} 
開發者ID:ethz-asl,項目名稱:hierarchical_loc,代碼行數:22,代碼來源:mobilenetvlad.py

示例7: tower

# 需要導入模塊: from tensorflow.contrib import slim [as 別名]
# 或者: from tensorflow.contrib.slim import arg_scope [as 別名]
def tower(image, mode, config):
        image = image_normalization(image)
        if image.shape[-1] == 1:
            image = tf.tile(image, [1, 1, 1, 3])

        with slim.arg_scope(resnet.resnet_arg_scope()):
            training = config['train_backbone'] and (mode == Mode.TRAIN)
            with slim.arg_scope([slim.conv2d, slim.batch_norm], trainable=training):
                _, encoder = resnet.resnet_v1_50(image,
                                                 is_training=training,
                                                 global_pool=False,
                                                 scope='resnet_v1_50')
        feature_map = encoder['resnet_v1_50/block3']
        descriptor = vlad(feature_map, config, mode == Mode.TRAIN)
        if config['dimensionality_reduction']:
            descriptor = dimensionality_reduction(descriptor, config)
        return descriptor 
開發者ID:ethz-asl,項目名稱:hierarchical_loc,代碼行數:19,代碼來源:netvlad_triplets.py

示例8: E

# 需要導入模塊: from tensorflow.contrib import slim [as 別名]
# 或者: from tensorflow.contrib.slim import arg_scope [as 別名]
def E(self, images, is_training = False, reuse=False):
	
	if images.get_shape()[3] == 3:
	    images = tf.image.rgb_to_grayscale(images)
	
	with tf.variable_scope('encoder',reuse=reuse):
	    with slim.arg_scope([slim.fully_connected], activation_fn=tf.nn.relu):
		with slim.arg_scope([slim.conv2d], activation_fn=tf.nn.relu, padding='VALID'):
		    net = slim.conv2d(images, 64, 5, scope='conv1')
		    net = slim.max_pool2d(net, 2, stride=2, scope='pool1')
		    net = slim.conv2d(net, 128, 5, scope='conv2')
		    net = slim.max_pool2d(net, 2, stride=2, scope='pool2')
		    net = tf.contrib.layers.flatten(net)
		    net = slim.fully_connected(net, 1024, activation_fn=tf.nn.relu, scope='fc3')
		    net = slim.dropout(net, 0.5, is_training=is_training)
		    net = slim.fully_connected(net, self.hidden_repr_size, activation_fn=tf.tanh,scope='fc4')
		    # dropout here or not?
		    #~ net = slim.dropout(net, 0.5, is_training=is_training)
		    return net 
開發者ID:pmorerio,項目名稱:minimal-entropy-correlation-alignment,代碼行數:21,代碼來源:model.py

示例9: mobilenetv2_scope

# 需要導入模塊: from tensorflow.contrib import slim [as 別名]
# 或者: from tensorflow.contrib.slim import arg_scope [as 別名]
def mobilenetv2_scope(is_training=True,
                      trainable=True,
                      weight_decay=0.00004,
                      stddev=0.09,
                      dropout_keep_prob=0.8,
                      bn_decay=0.997):
  """Defines Mobilenet training scope.
  In default. We do not use BN

  ReWrite the scope.
  """
  batch_norm_params = {
      'is_training': False,
      'trainable': False,
      'decay': bn_decay,
  }
  with slim.arg_scope(training_scope(is_training=is_training, weight_decay=weight_decay)):
      with slim.arg_scope([slim.conv2d, slim.fully_connected, slim.separable_conv2d],
                          trainable=trainable):
          with slim.arg_scope([slim.batch_norm], **batch_norm_params) as sc:
              return sc 
開發者ID:DetectionTeamUCAS,項目名稱:R2CNN_Faster-RCNN_Tensorflow,代碼行數:23,代碼來源:mobilenet_v2.py

示例10: training_scope

# 需要導入模塊: from tensorflow.contrib import slim [as 別名]
# 或者: from tensorflow.contrib.slim import arg_scope [as 別名]
def training_scope(**kwargs):
  """Defines MobilenetV2 training scope.

  Usage:
     with tf.contrib.slim.arg_scope(mobilenet_v2.training_scope()):
       logits, endpoints = mobilenet_v2.mobilenet(input_tensor)

  with slim.

  Args:
    **kwargs: Passed to mobilenet.training_scope. The following parameters
    are supported:
      weight_decay- The weight decay to use for regularizing the model.
      stddev-  Standard deviation for initialization, if negative uses xavier.
      dropout_keep_prob- dropout keep probability
      bn_decay- decay for the batch norm moving averages.

  Returns:
    An `arg_scope` to use for the mobilenet v2 model.
  """
  return lib.training_scope(**kwargs) 
開發者ID:tensorflow,項目名稱:benchmarks,代碼行數:23,代碼來源:mobilenet_v2.py

示例11: testBuildLogitsCifarModel

# 需要導入模塊: from tensorflow.contrib import slim [as 別名]
# 或者: from tensorflow.contrib.slim import arg_scope [as 別名]
def testBuildLogitsCifarModel(self):
    batch_size = 5
    height, width = 32, 32
    num_classes = 10
    inputs = tf.random_uniform((batch_size, height, width, 3))
    tf.train.create_global_step()
    with slim.arg_scope(nasnet.nasnet_cifar_arg_scope()):
      logits, end_points = nasnet.build_nasnet_cifar(inputs, num_classes)
    auxlogits = end_points['AuxLogits']
    predictions = end_points['Predictions']
    self.assertListEqual(auxlogits.get_shape().as_list(),
                         [batch_size, num_classes])
    self.assertListEqual(logits.get_shape().as_list(),
                         [batch_size, num_classes])
    self.assertListEqual(predictions.get_shape().as_list(),
                         [batch_size, num_classes]) 
開發者ID:tensorflow,項目名稱:benchmarks,代碼行數:18,代碼來源:nasnet_test.py

示例12: testBuildLogitsMobileModel

# 需要導入模塊: from tensorflow.contrib import slim [as 別名]
# 或者: from tensorflow.contrib.slim import arg_scope [as 別名]
def testBuildLogitsMobileModel(self):
    batch_size = 5
    height, width = 224, 224
    num_classes = 1000
    inputs = tf.random_uniform((batch_size, height, width, 3))
    tf.train.create_global_step()
    with slim.arg_scope(nasnet.nasnet_mobile_arg_scope()):
      logits, end_points = nasnet.build_nasnet_mobile(inputs, num_classes)
    auxlogits = end_points['AuxLogits']
    predictions = end_points['Predictions']
    self.assertListEqual(auxlogits.get_shape().as_list(),
                         [batch_size, num_classes])
    self.assertListEqual(logits.get_shape().as_list(),
                         [batch_size, num_classes])
    self.assertListEqual(predictions.get_shape().as_list(),
                         [batch_size, num_classes]) 
開發者ID:tensorflow,項目名稱:benchmarks,代碼行數:18,代碼來源:nasnet_test.py

示例13: testBuildLogitsLargeModel

# 需要導入模塊: from tensorflow.contrib import slim [as 別名]
# 或者: from tensorflow.contrib.slim import arg_scope [as 別名]
def testBuildLogitsLargeModel(self):
    batch_size = 5
    height, width = 331, 331
    num_classes = 1000
    inputs = tf.random_uniform((batch_size, height, width, 3))
    tf.train.create_global_step()
    with slim.arg_scope(nasnet.nasnet_large_arg_scope()):
      logits, end_points = nasnet.build_nasnet_large(inputs, num_classes)
    auxlogits = end_points['AuxLogits']
    predictions = end_points['Predictions']
    self.assertListEqual(auxlogits.get_shape().as_list(),
                         [batch_size, num_classes])
    self.assertListEqual(logits.get_shape().as_list(),
                         [batch_size, num_classes])
    self.assertListEqual(predictions.get_shape().as_list(),
                         [batch_size, num_classes]) 
開發者ID:tensorflow,項目名稱:benchmarks,代碼行數:18,代碼來源:nasnet_test.py

示例14: _extra_conv_arg_scope_with_bn

# 需要導入模塊: from tensorflow.contrib import slim [as 別名]
# 或者: from tensorflow.contrib.slim import arg_scope [as 別名]
def _extra_conv_arg_scope_with_bn(weight_decay=0.00001,
                     activation_fn=None,
                     batch_norm_decay=0.997,
                     batch_norm_epsilon=1e-5,
                     batch_norm_scale=True):

  batch_norm_params = {
      'decay': batch_norm_decay,
      'epsilon': batch_norm_epsilon,
      'scale': batch_norm_scale,
      'updates_collections': tf.GraphKeys.UPDATE_OPS,
  }

  with slim.arg_scope(
      [slim.conv2d],
      weights_regularizer=slim.l2_regularizer(weight_decay),
      weights_initializer=slim.variance_scaling_initializer(),
      activation_fn=tf.nn.relu,
      normalizer_fn=slim.batch_norm,
      normalizer_params=batch_norm_params):
    with slim.arg_scope([slim.batch_norm], **batch_norm_params):
      with slim.arg_scope([slim.max_pool2d], padding='SAME') as arg_sc:
        return arg_sc 
開發者ID:CharlesShang,項目名稱:FastMaskRCNN,代碼行數:25,代碼來源:pyramid_network.py

示例15: _extra_conv_arg_scope

# 需要導入模塊: from tensorflow.contrib import slim [as 別名]
# 或者: from tensorflow.contrib.slim import arg_scope [as 別名]
def _extra_conv_arg_scope(weight_decay=0.00001, activation_fn=None, normalizer_fn=None):

  with slim.arg_scope(
      [slim.conv2d, slim.conv2d_transpose],
      padding='SAME',
      weights_regularizer=slim.l2_regularizer(weight_decay),
      weights_initializer=tf.truncated_normal_initializer(stddev=0.001),
      activation_fn=activation_fn,
      normalizer_fn=normalizer_fn,) as arg_sc:
    with slim.arg_scope(
      [slim.fully_connected],
          weights_regularizer=slim.l2_regularizer(weight_decay),
          weights_initializer=tf.truncated_normal_initializer(stddev=0.001),
          activation_fn=activation_fn,
          normalizer_fn=normalizer_fn) as arg_sc:
          return arg_sc 
開發者ID:CharlesShang,項目名稱:FastMaskRCNN,代碼行數:18,代碼來源:pyramid_network.py


注:本文中的tensorflow.contrib.slim.arg_scope方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。