本文整理匯總了Python中tensorflow.contrib.session_bundle.exporter.regression_signature方法的典型用法代碼示例。如果您正苦於以下問題:Python exporter.regression_signature方法的具體用法?Python exporter.regression_signature怎麽用?Python exporter.regression_signature使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.contrib.session_bundle.exporter
的用法示例。
在下文中一共展示了exporter.regression_signature方法的4個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: regression_signature_fn
# 需要導入模塊: from tensorflow.contrib.session_bundle import exporter [as 別名]
# 或者: from tensorflow.contrib.session_bundle.exporter import regression_signature [as 別名]
def regression_signature_fn(examples, unused_features, predictions):
"""Creates regression signature from given examples and predictions.
Args:
examples: `Tensor`.
unused_features: `dict` of `Tensor`s.
predictions: `Tensor`.
Returns:
Tuple of default regression signature and empty named signatures.
Raises:
ValueError: If examples is `None`.
"""
if examples is None:
raise ValueError('examples cannot be None when using this signature fn.')
default_signature = exporter.regression_signature(
input_tensor=examples, output_tensor=predictions)
return default_signature, {}
示例2: Export
# 需要導入模塊: from tensorflow.contrib.session_bundle import exporter [as 別名]
# 或者: from tensorflow.contrib.session_bundle.exporter import regression_signature [as 別名]
def Export():
export_path = "/tmp/half_plus_two"
with tf.Session() as sess:
# Make model parameters a&b variables instead of constants to
# exercise the variable reloading mechanisms.
a = tf.Variable(0.5)
b = tf.Variable(2.0)
# Calculate, y = a*x + b
# here we use a placeholder 'x' which is fed at inference time.
x = tf.placeholder(tf.float32)
y = tf.add(tf.multiply(a, x), b)
# Run an export.
tf.global_variables_initializer().run()
export = exporter.Exporter(tf.train.Saver())
export.init(named_graph_signatures={
"inputs": exporter.generic_signature({"x": x}),
"outputs": exporter.generic_signature({"y": y}),
"regress": exporter.regression_signature(x, y)
})
export.export(export_path, tf.constant(123), sess)
示例3: _create_signature_fn
# 需要導入模塊: from tensorflow.contrib.session_bundle import exporter [as 別名]
# 或者: from tensorflow.contrib.session_bundle.exporter import regression_signature [as 別名]
def _create_signature_fn(self):
def _regression_signature_fn(examples, unused_features, predictions):
if isinstance(predictions, dict):
score = predictions[prediction_key.PredictionKey.SCORES]
else:
score = predictions
default_signature = exporter.regression_signature(
input_tensor=examples, output_tensor=score)
# TODO(zakaria): add validation
return default_signature, {}
return _regression_signature_fn
示例4: logistic_regression_signature_fn
# 需要導入模塊: from tensorflow.contrib.session_bundle import exporter [as 別名]
# 或者: from tensorflow.contrib.session_bundle.exporter import regression_signature [as 別名]
def logistic_regression_signature_fn(examples, unused_features, predictions):
"""Creates logistic regression signature from given examples and predictions.
Args:
examples: `Tensor`.
unused_features: `dict` of `Tensor`s.
predictions: `Tensor` of shape [batch_size, 2] of predicted probabilities or
dict that contains the probabilities tensor as in
{'probabilities', `Tensor`}.
Returns:
Tuple of default regression signature and named signature.
Raises:
ValueError: If examples is `None`.
"""
if examples is None:
raise ValueError('examples cannot be None when using this signature fn.')
if isinstance(predictions, dict):
predictions_tensor = predictions['probabilities']
else:
predictions_tensor = predictions
# predictions should have shape [batch_size, 2] where first column is P(Y=0|x)
# while second column is P(Y=1|x). We are only interested in the second
# column for inference.
predictions_shape = predictions_tensor.get_shape()
predictions_rank = len(predictions_shape)
if predictions_rank != 2:
logging.fatal(
'Expected predictions to have rank 2, but received predictions with '
'rank: {} and shape: {}'.format(predictions_rank, predictions_shape))
if predictions_shape[1] != 2:
logging.fatal(
'Expected predictions to have 2nd dimension: 2, but received '
'predictions with 2nd dimension: {} and shape: {}. Did you mean to use '
'regression_signature_fn or classification_signature_fn_with_prob '
'instead?'.format(predictions_shape[1], predictions_shape))
positive_predictions = predictions_tensor[:, 1]
default_signature = exporter.regression_signature(
input_tensor=examples, output_tensor=positive_predictions)
return default_signature, {}
# pylint: disable=protected-access