當前位置: 首頁>>代碼示例>>Python>>正文


Python exporter.generic_signature方法代碼示例

本文整理匯總了Python中tensorflow.contrib.session_bundle.exporter.generic_signature方法的典型用法代碼示例。如果您正苦於以下問題:Python exporter.generic_signature方法的具體用法?Python exporter.generic_signature怎麽用?Python exporter.generic_signature使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.contrib.session_bundle.exporter的用法示例。


在下文中一共展示了exporter.generic_signature方法的5個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: Export

# 需要導入模塊: from tensorflow.contrib.session_bundle import exporter [as 別名]
# 或者: from tensorflow.contrib.session_bundle.exporter import generic_signature [as 別名]
def Export():
  export_path = "/tmp/half_plus_two"
  with tf.Session() as sess:
    # Make model parameters a&b variables instead of constants to
    # exercise the variable reloading mechanisms.
    a = tf.Variable(0.5)
    b = tf.Variable(2.0)

    # Calculate, y = a*x + b
    # here we use a placeholder 'x' which is fed at inference time.
    x = tf.placeholder(tf.float32)
    y = tf.add(tf.multiply(a, x), b)

    # Run an export.
    tf.global_variables_initializer().run()
    export = exporter.Exporter(tf.train.Saver())
    export.init(named_graph_signatures={
        "inputs": exporter.generic_signature({"x": x}),
        "outputs": exporter.generic_signature({"y": y}),
        "regress": exporter.regression_signature(x, y)
    })
    export.export(export_path, tf.constant(123), sess) 
開發者ID:helmut-hoffer-von-ankershoffen,項目名稱:jetson,代碼行數:24,代碼來源:export_half_plus_two.py

示例2: generic_signature_fn

# 需要導入模塊: from tensorflow.contrib.session_bundle import exporter [as 別名]
# 或者: from tensorflow.contrib.session_bundle.exporter import generic_signature [as 別名]
def generic_signature_fn(examples, unused_features, predictions):
  """Creates generic signature from given examples and predictions.

  This is needed for backward compatibility with default behaviour of
  export_estimator.

  Args:
    examples: `Tensor`.
    unused_features: `dict` of `Tensor`s.
    predictions: `Tensor` or `dict` of `Tensor`s.

  Returns:
    Tuple of default signature and empty named signatures.

  Raises:
    ValueError: If examples is `None`.
  """
  if examples is None:
    raise ValueError('examples cannot be None when using this signature fn.')

  tensors = {'inputs': examples}
  if not isinstance(predictions, dict):
    predictions = {'outputs': predictions}
  tensors.update(predictions)
  default_signature = exporter.generic_signature(tensors)
  return default_signature, {} 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:28,代碼來源:export.py

示例3: export_session_bundle

# 需要導入模塊: from tensorflow.contrib.session_bundle import exporter [as 別名]
# 或者: from tensorflow.contrib.session_bundle.exporter import generic_signature [as 別名]
def export_session_bundle(self):
        export_dir_base = self.saver_spec.get('export_directory')
        if not export_dir_base:
            print("export_directory is None")

        checkpoint = tf.train.latest_checkpoint(self.saver_directory)
        if not checkpoint:
            raise NotFittedError("Couldn't find trained model at %s." % self.saver_directory)

        export_dir = saved_model_export_utils.get_timestamped_export_dir(export_dir_base)

        if self.distributed_spec:
            sess = tf.Session(target=self.server.target, graph=self.graph, config=self.session_config)
        else:
            sess = tf.Session(graph=self.graph)
        self.scaffold.saver.restore(sess, checkpoint)

        signature = {name: ts for name, ts in self.states_input.items()}
        signature["deterministic"] = self.deterministic_input
        signature["update"] = self.update_input

        exporter = Exporter(self.scaffold.saver)
        exporter.init(self.graph.as_graph_def(),
                      clear_devices=True,
                      default_graph_signature=generic_signature(signature))
        exporter.export(export_dir_base=export_dir,
                        global_step_tensor=self.timestep,
                        sess=sess)

        return export_dir 
開發者ID:rec-agent,項目名稱:rec-rl,代碼行數:32,代碼來源:model.py

示例4: export_model

# 需要導入模塊: from tensorflow.contrib.session_bundle import exporter [as 別名]
# 或者: from tensorflow.contrib.session_bundle.exporter import generic_signature [as 別名]
def export_model(sess, inputs_signature, outputs_signature):
  # Export the model for generic inference service
  print("Exporting trained model to {}".format(FLAGS.model_path))
  saver = tf.train.Saver(sharded=True)
  model_exporter = exporter.Exporter(saver)
  model_exporter.init(
      sess.graph.as_graph_def(),
      named_graph_signatures={
          "inputs": exporter.generic_signature(inputs_signature),
          "outputs": exporter.generic_signature(outputs_signature)
      })
  model_exporter.export(FLAGS.model_path, tf.constant(FLAGS.model_version),
                        sess)
  print("Done exporting!") 
開發者ID:XiaoMi,項目名稱:cloud-ml-sdk,代碼行數:16,代碼來源:task.py

示例5: main

# 需要導入模塊: from tensorflow.contrib.session_bundle import exporter [as 別名]
# 或者: from tensorflow.contrib.session_bundle.exporter import generic_signature [as 別名]
def main():
  # Define training data
  x = np.ones(FLAGS.batch_size)
  y = np.ones(FLAGS.batch_size)

  # Define the model
  X = tf.placeholder(tf.float32, shape=[None])
  Y = tf.placeholder(tf.float32, shape=[None])
  w = tf.Variable(1.0, name="weight")
  b = tf.Variable(1.0, name="bias")
  loss = tf.square(Y - tf.mul(X, w) - b)
  train_op = tf.train.GradientDescentOptimizer(0.01).minimize(loss)
  predict_op  = tf.mul(X, w) + b

  saver = tf.train.Saver()
  checkpoint_dir = FLAGS.checkpoint_dir
  checkpoint_file = checkpoint_dir + "/checkpoint.ckpt"
  if not os.path.exists(checkpoint_dir):
    os.makedirs(checkpoint_dir)

  # Start the session
  with tf.Session() as sess:
    sess.run(tf.initialize_all_variables())

    ckpt = tf.train.get_checkpoint_state(checkpoint_dir)
    if ckpt and ckpt.model_checkpoint_path:
      print("Continue training from the model {}".format(ckpt.model_checkpoint_path))
      saver.restore(sess, ckpt.model_checkpoint_path)

    # Start training
    start_time = time.time()
    for epoch in range(FLAGS.epoch_number):
      sess.run(train_op, feed_dict={X: x, Y: y})

      # Start validating
      if epoch % FLAGS.steps_to_validate == 0:
        end_time = time.time()
        print("[{}] Epoch: {}".format(end_time - start_time, epoch))

        saver.save(sess, checkpoint_file)
        start_time = end_time

    # Print model variables
    w_value, b_value = sess.run([w, b])
    print("The model of w: {}, b: {}".format(w_value, b_value))

    # Export the model
    print("Exporting trained model to {}".format(FLAGS.model_path))
    model_exporter = exporter.Exporter(saver)
    model_exporter.init(
      sess.graph.as_graph_def(),
      named_graph_signatures={
        'inputs': exporter.generic_signature({"features": X}),
        'outputs': exporter.generic_signature({"prediction": predict_op})
      })
    model_exporter.export(FLAGS.model_path, tf.constant(FLAGS.export_version), sess)
    print 'Done exporting!' 
開發者ID:tobegit3hub,項目名稱:tensorflow_template_application,代碼行數:59,代碼來源:train.py


注:本文中的tensorflow.contrib.session_bundle.exporter.generic_signature方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。