當前位置: 首頁>>代碼示例>>Python>>正文


Python seq2seq.TrainingHelper方法代碼示例

本文整理匯總了Python中tensorflow.contrib.seq2seq.TrainingHelper方法的典型用法代碼示例。如果您正苦於以下問題:Python seq2seq.TrainingHelper方法的具體用法?Python seq2seq.TrainingHelper怎麽用?Python seq2seq.TrainingHelper使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.contrib.seq2seq的用法示例。


在下文中一共展示了seq2seq.TrainingHelper方法的8個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: build_train_decoder

# 需要導入模塊: from tensorflow.contrib import seq2seq [as 別名]
# 或者: from tensorflow.contrib.seq2seq import TrainingHelper [as 別名]
def build_train_decoder(self):
        with tf.name_scope('train_decoder'):
            training_helper = TrainingHelper(inputs=self.inputs_dense,
                                             sequence_length=self.inputs_length,
                                             time_major=False,
                                             name='training_helper')
            with tf.name_scope('basic_decoder'):
                training_decoder = BasicDecoder(cell=self.cell,
                                                helper=training_helper,
                                                initial_state=self.initial_state,
                                                output_layer=self.output_layer)
            with tf.name_scope('dynamic_decode'):
                (outputs, self.last_state, self.outputs_length) = (seq2seq.dynamic_decode(
                    decoder=training_decoder,
                    output_time_major=False,
                    impute_finished=True,
                    maximum_iterations=self.inputs_max_length))
                self.logits = tf.identity(outputs.rnn_output)
                self.log_probs = tf.nn.log_softmax(self.logits)
                self.gs_hypotheses = tf.argmax(self.log_probs, -1) 
開發者ID:microsoft,項目名稱:icecaps,代碼行數:22,代碼來源:seq2seq_decoder_estimator.py

示例2: _build_decoder_train

# 需要導入模塊: from tensorflow.contrib import seq2seq [as 別名]
# 或者: from tensorflow.contrib.seq2seq import TrainingHelper [as 別名]
def _build_decoder_train(self):
        self._decoder_train_inputs = tf.nn.embedding_lookup(self._embedding_matrix, self._labels_padded_GO)

        if self._mode == 'train':
            sampler = seq2seq.ScheduledEmbeddingTrainingHelper(
                inputs=self._decoder_train_inputs,
                sequence_length=self._labels_length,
                embedding=self._embedding_matrix,
                sampling_probability=self._sampling_probability_outputs,
            )
        else:
            sampler = seq2seq.TrainingHelper(
                inputs=self._decoder_train_inputs,
                sequence_length=self._labels_length,
            )

        cells = self._decoder_cells

        decoder_train = seq2seq.BasicDecoder(
            cell=cells,
            helper=sampler,
            initial_state=self._decoder_initial_state,
            output_layer=self._dense_layer,
        )

        outputs, _, _ = seq2seq.dynamic_decode(
            decoder_train,
            output_time_major=False,
            impute_finished=True,
            swap_memory=False,
        )

        logits = outputs.rnn_output
        self.decoder_train_outputs = logits
        self.average_log_likelihoods = self._compute_likelihood(logits)
        print('') 
開發者ID:georgesterpu,項目名稱:avsr-tf1,代碼行數:38,代碼來源:lm.py

示例3: _build_decoder

# 需要導入模塊: from tensorflow.contrib import seq2seq [as 別名]
# 或者: from tensorflow.contrib.seq2seq import TrainingHelper [as 別名]
def _build_decoder(self, decoder_cell, batch_size):
    embedding_fn = functools.partial(tf.one_hot, depth=self.num_classes)
    output_layer = tf.layers.Dense(
      self.num_classes,
      activation=None,
      use_bias=True,
      kernel_initializer=tf.variance_scaling_initializer(),
      bias_initializer=tf.zeros_initializer())
    if self._is_training:
      train_helper = seq2seq.TrainingHelper(
        embedding_fn(self._groundtruth_dict['decoder_inputs']),
        sequence_length=self._groundtruth_dict['decoder_lengths'],
        time_major=False)
      decoder = seq2seq.BasicDecoder(
        cell=decoder_cell,
        helper=train_helper,
        initial_state=decoder_cell.zero_state(batch_size, tf.float32),
        output_layer=output_layer)
    else:
      decoder = seq2seq.BeamSearchDecoder(
        cell=decoder_cell,
        embedding=embedding_fn,
        start_tokens=tf.fill([batch_size], self.start_label),
        end_token=self.end_label,
        initial_state=decoder_cell.zero_state(batch_size * self._beam_width, tf.float32),
        beam_width=self._beam_width,
        output_layer=output_layer,
        length_penalty_weight=0.0)
    return decoder 
開發者ID:bgshih,項目名稱:aster,代碼行數:31,代碼來源:attention_predictor.py

示例4: next_inputs

# 需要導入模塊: from tensorflow.contrib import seq2seq [as 別名]
# 或者: from tensorflow.contrib.seq2seq import TrainingHelper [as 別名]
def next_inputs(self, time, outputs, state, sample_ids, name=None):
    """Compute the next inputs and state."""
    del sample_ids  # Unused.
    with tf.name_scope(name, "ScheduledContinuousEmbeddingNextInputs",
                       [time, outputs, state]):
      # Get ground truth next inputs.
      (finished, base_next_inputs,
       state) = contrib_seq2seq.TrainingHelper.next_inputs(
           self, time, outputs, state, name=name)

      # Get generated next inputs.
      all_finished = tf.reduce_all(finished)
      generated_next_inputs = tf.cond(
          all_finished,
          # If we're finished, the next_inputs value doesn't matter
          lambda: outputs,
          lambda: outputs)

      # Sample mixing weights.
      weight_sampler = tf.distributions.Dirichlet(
          concentration=self._mixing_concentration)
      weight = weight_sampler.sample(
          sample_shape=self.batch_size, seed=self._scheduling_seed)
      alpha, beta = weight, 1 - weight

      # Mix the inputs.
      next_inputs = alpha * base_next_inputs + beta * generated_next_inputs

      return finished, next_inputs, state 
開發者ID:google-research,項目名稱:language,代碼行數:31,代碼來源:helpers.py

示例5: build_mmi_decoder

# 需要導入模塊: from tensorflow.contrib import seq2seq [as 別名]
# 或者: from tensorflow.contrib.seq2seq import TrainingHelper [as 別名]
def build_mmi_decoder(self):
        with tf.name_scope('mmi_scorer'):
            training_helper = TrainingHelper(inputs=self.inputs_dense,
                                             sequence_length=self.inputs_length,
                                             time_major=False,
                                             name='mmi_training_helper')
            with tf.name_scope('mmi_basic_decoder'):
                training_decoder = MMIDecoder(cell=self.cell,
                                              helper=training_helper,
                                              initial_state=self.initial_state,
                                              output_layer=self.output_layer)
            with tf.name_scope('mmi_dynamic_decoder'):
                (outputs, self.last_state, self.outputs_length) = seq2seq.dynamic_decode(
                    decoder=training_decoder,
                    output_time_major=False,
                    impute_finished=True,
                    maximum_iterations=self.inputs_max_length)

            self.scores_raw = tf.identity(
                tf.transpose(outputs.scores, [1, 2, 0]))
            targets = self.features["targets"]
            targets = tf.cast(targets, dtype=tf.int32)
            target_len = tf.cast(tf.count_nonzero(
                targets - self.vocab.end_token_id, -1), dtype=tf.int32)
            max_target_len = tf.reduce_max(target_len)
            pruned_targets = tf.slice(targets, [0, 0], [-1, max_target_len])

            index = (tf.range(0, max_target_len, 1)) * \
                tf.ones(shape=[self.batch_size, 1], dtype=tf.int32)
            row_no = tf.transpose(tf.range(
                0, self.batch_size, 1) * tf.ones(shape=(max_target_len, 1), dtype=tf.int32))
            indices = tf.stack([index, pruned_targets, row_no], axis=2)

            # Retrieve scores corresponding to indices
            batch_scores = tf.gather_nd(self.scores_raw, indices)
            self.mmi_scores = tf.reduce_sum(batch_scores, axis=1) 
開發者ID:microsoft,項目名稱:icecaps,代碼行數:38,代碼來源:seq2seq_decoder_estimator.py

示例6: _make_train

# 需要導入模塊: from tensorflow.contrib import seq2seq [as 別名]
# 或者: from tensorflow.contrib.seq2seq import TrainingHelper [as 別名]
def _make_train(self, decoder_cell, decoder_initial_state):
        # Assume 0 is the START token
        start_tokens = tf.zeros((self.batch_size,), dtype=tf.int32)
        y = tf.concat([tf.expand_dims(start_tokens, 1), self.y], 1)
        output_lengths = tf.reduce_sum(tf.to_int32(tf.not_equal(y, 1)), 1)

        # Reuse encoding embeddings
        inputs = layers.embed_sequence(
            y,
            vocab_size=self.vocab_size,
            embed_dim=self.embed_dim,
            scope='embed', reuse=True)

        # Prepare the decoder with the attention cell
        with tf.variable_scope('decode'):
            # Project to correct dimensions
            out_proj = tf.layers.Dense(self.vocab_size, name='output_proj')
            inputs = tf.layers.dense(inputs, self.hidden_size, name='input_proj')

            helper = seq2seq.TrainingHelper(inputs, output_lengths)
            decoder = seq2seq.BasicDecoder(
                cell=decoder_cell, helper=helper,
                initial_state=decoder_initial_state,
                output_layer=out_proj)
            max_len = tf.reduce_max(output_lengths)
            final_outputs, final_state, final_sequence_lengths = seq2seq.dynamic_decode(
                decoder=decoder, impute_finished=True, maximum_iterations=max_len)
            logits = final_outputs.rnn_output

        # Set valid timesteps to 1 and padded steps to 0,
        # so we only look at the actual sequence without the padding
        mask = tf.sequence_mask(output_lengths, maxlen=max_len, dtype=tf.float32)

        # Prioritize examples that the model was wrong on,
        # by setting weight=1 to any example where the prediction was not 1,
        # i.e. incorrect
        # weights = tf.to_float(tf.not_equal(y[:, :-1], 1))

        # Training and loss ops,
        # with gradient clipping (see [4])
        loss_op = seq2seq.sequence_loss(logits, self.y, weights=mask)
        optimizer = tf.train.AdamOptimizer(self.learning_rate)
        gradients, variables = zip(*optimizer.compute_gradients(loss_op))
        gradients, _ = tf.clip_by_global_norm(gradients, self.max_grad_norm)
        train_op = optimizer.apply_gradients(zip(gradients, variables))

        # Compute accuracy
        # Use the mask from before so we only compare
        # the relevant sequence lengths for each example
        pred = tf.argmax(logits, axis=2, output_type=tf.int32)
        pred = tf.boolean_mask(pred, mask)
        true = tf.boolean_mask(self.y, mask)
        accs = tf.cast(tf.equal(pred, true), tf.float32)
        accuracy_op = tf.reduce_mean(accs, name='acc')
        return loss_op, train_op, accuracy_op 
開發者ID:frnsys,項目名稱:retrosynthesis_planner,代碼行數:57,代碼來源:seq2seq.py

示例7: _build_model

# 需要導入模塊: from tensorflow.contrib import seq2seq [as 別名]
# 或者: from tensorflow.contrib.seq2seq import TrainingHelper [as 別名]
def _build_model(self):
        with tf.variable_scope("embeddings"):
            self.source_embs = tf.get_variable(name="source_embs", shape=[self.cfg.source_vocab_size, self.cfg.emb_dim],
                                               dtype=tf.float32, trainable=True)
            self.target_embs = tf.get_variable(name="embeddings", shape=[self.cfg.vocab_size, self.cfg.emb_dim],
                                               dtype=tf.float32, trainable=True)
            source_emb = tf.nn.embedding_lookup(self.source_embs, self.enc_source)
            target_emb = tf.nn.embedding_lookup(self.target_embs, self.dec_target_in)
            print("source embedding shape: {}".format(source_emb.get_shape().as_list()))
            print("target input embedding shape: {}".format(target_emb.get_shape().as_list()))

        with tf.variable_scope("encoder"):
            if self.cfg.use_bi_rnn:
                with tf.variable_scope("bi-directional_rnn"):
                    cell_fw = GRUCell(self.cfg.num_units) if self.cfg.cell_type == "gru" else \
                        LSTMCell(self.cfg.num_units)
                    cell_bw = GRUCell(self.cfg.num_units) if self.cfg.cell_type == "gru" else \
                        LSTMCell(self.cfg.num_units)
                    bi_outputs, _ = bidirectional_dynamic_rnn(cell_fw, cell_bw, source_emb, dtype=tf.float32,
                                                              sequence_length=self.enc_seq_len)
                    source_emb = tf.concat(bi_outputs, axis=-1)
                    print("bi-directional rnn output shape: {}".format(source_emb.get_shape().as_list()))
            input_project = tf.layers.Dense(units=self.cfg.num_units, dtype=tf.float32, name="input_projection")
            source_emb = input_project(source_emb)
            print("encoder input projection shape: {}".format(source_emb.get_shape().as_list()))
            enc_cells = self._create_encoder_cell()
            self.enc_outputs, self.enc_states = dynamic_rnn(enc_cells, source_emb, sequence_length=self.enc_seq_len,
                                                            dtype=tf.float32)
            print("encoder output shape: {}".format(self.enc_outputs.get_shape().as_list()))

        with tf.variable_scope("decoder"):
            self.max_dec_seq_len = tf.reduce_max(self.dec_seq_len, name="max_dec_seq_len")
            self.dec_cells, self.dec_init_states = self._create_decoder_cell()
            # define input and output projection layer
            input_project = tf.layers.Dense(units=self.cfg.num_units, name="input_projection")
            self.dense_layer = tf.layers.Dense(units=self.cfg.vocab_size, name="output_projection")
            if self.mode == "train":  # either "train" or "decode"
                # for training
                target_emb = input_project(target_emb)
                train_helper = TrainingHelper(target_emb, sequence_length=self.dec_seq_len, name="train_helper")
                train_decoder = BasicDecoder(self.dec_cells, helper=train_helper, output_layer=self.dense_layer,
                                             initial_state=self.dec_init_states)
                self.dec_output, _, _ = dynamic_decode(train_decoder, impute_finished=True,
                                                       maximum_iterations=self.max_dec_seq_len)
                print("decoder output shape: {} (vocab size)".format(self.dec_output.rnn_output.get_shape().as_list()))

                # for decode
                start_token = tf.ones(shape=[self.batch_size, ], dtype=tf.int32) * self.cfg.target_dict[GO]
                end_token = self.cfg.target_dict[EOS]

                def inputs_project(inputs):
                    return input_project(tf.nn.embedding_lookup(self.target_embs, inputs))

                dec_helper = GreedyEmbeddingHelper(embedding=inputs_project, start_tokens=start_token,
                                                   end_token=end_token)
                infer_decoder = BasicDecoder(self.dec_cells, helper=dec_helper, initial_state=self.dec_init_states,
                                             output_layer=self.dense_layer)
                infer_dec_output, _, _ = dynamic_decode(infer_decoder, maximum_iterations=self.cfg.maximum_iterations)
                self.dec_predicts = infer_dec_output.sample_id 
開發者ID:IsaacChanghau,項目名稱:AmusingPythonCodes,代碼行數:61,代碼來源:seq2seq_model.py

示例8: _build_helper

# 需要導入模塊: from tensorflow.contrib import seq2seq [as 別名]
# 或者: from tensorflow.contrib.seq2seq import TrainingHelper [as 別名]
def _build_helper(self, batch_size, embeddings, inputs, inputs_length,
                    mode, hparams, decoder_hparams):
    """Builds a helper instance for BasicDecoder."""
    # Auxiliary decoding mode at training time.
    if decoder_hparams.auxiliary:
      start_tokens = tf.fill([batch_size], text_encoder.PAD_ID)
      # helper = helpers.FixedContinuousEmbeddingHelper(
      #     embedding=embeddings,
      #     start_tokens=start_tokens,
      #     end_token=text_encoder.EOS_ID,
      #     num_steps=hparams.aux_decode_length)
      helper = contrib_seq2seq.SampleEmbeddingHelper(
          embedding=embeddings,
          start_tokens=start_tokens,
          end_token=text_encoder.EOS_ID,
          softmax_temperature=None)
    # Continuous decoding.
    elif hparams.decoder_continuous:
      # Scheduled mixing.
      if mode == tf.estimator.ModeKeys.TRAIN and hparams.scheduled_training:
        helper = helpers.ScheduledContinuousEmbeddingTrainingHelper(
            inputs=inputs,
            sequence_length=inputs_length,
            mixing_concentration=hparams.scheduled_mixing_concentration)
      # Pure continuous decoding (hard to train!).
      elif mode == tf.estimator.ModeKeys.TRAIN:
        helper = helpers.ContinuousEmbeddingTrainingHelper(
            inputs=inputs,
            sequence_length=inputs_length)
      # EVAL and PREDICT expect teacher forcing behavior.
      else:
        helper = contrib_seq2seq.TrainingHelper(
            inputs=inputs, sequence_length=inputs_length)
    # Standard decoding.
    else:
      # Scheduled sampling.
      if mode == tf.estimator.ModeKeys.TRAIN and hparams.scheduled_training:
        helper = contrib_seq2seq.ScheduledEmbeddingTrainingHelper(
            inputs=inputs,
            sequence_length=inputs_length,
            embedding=embeddings,
            sampling_probability=hparams.scheduled_sampling_probability)
      # Teacher forcing (also for EVAL and PREDICT).
      else:
        helper = contrib_seq2seq.TrainingHelper(
            inputs=inputs, sequence_length=inputs_length)
    return helper 
開發者ID:google-research,項目名稱:language,代碼行數:49,代碼來源:decoders.py


注:本文中的tensorflow.contrib.seq2seq.TrainingHelper方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。