本文整理匯總了Python中tensorflow.contrib.seq2seq.GreedyEmbeddingHelper方法的典型用法代碼示例。如果您正苦於以下問題:Python seq2seq.GreedyEmbeddingHelper方法的具體用法?Python seq2seq.GreedyEmbeddingHelper怎麽用?Python seq2seq.GreedyEmbeddingHelper使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.contrib.seq2seq
的用法示例。
在下文中一共展示了seq2seq.GreedyEmbeddingHelper方法的4個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: next_inputs
# 需要導入模塊: from tensorflow.contrib import seq2seq [as 別名]
# 或者: from tensorflow.contrib.seq2seq import GreedyEmbeddingHelper [as 別名]
def next_inputs(self, time, outputs, state, stop_id, name=None):
"""next_inputs_fn for GreedyEmbeddingHelper."""
del time # unused by next_inputs_fn
finished = math_ops.equal(stop_id, 1) # 1 is stop signal
all_finished = math_ops.reduce_all(finished)
next_inputs = control_flow_ops.cond(
all_finished,
# If we're finished, the next_inputs value doesn't matter
lambda: self._start_inputs,
lambda: outputs)
return (finished, next_inputs, state)
示例2: _build_decoder_test_greedy
# 需要導入模塊: from tensorflow.contrib import seq2seq [as 別名]
# 或者: from tensorflow.contrib.seq2seq import GreedyEmbeddingHelper [as 別名]
def _build_decoder_test_greedy(self):
r"""
Builds the greedy test decoder, which feeds the most likely decoded symbol as input for the
next timestep
"""
self._helper_greedy = seq2seq.GreedyEmbeddingHelper(
embedding=self._embedding_matrix,
start_tokens=tf.tile([self._GO_ID], [self._batch_size]),
end_token=self._EOS_ID)
if self._hparams.enable_attention is True:
cells, initial_state = add_attention(
cells=self._decoder_cells,
attention_types=self._hparams.attention_type[1],
num_units=self._hparams.decoder_units_per_layer[-1],
memory=self._encoder_memory,
memory_len=self._encoder_features_len,
beam_search=False,
batch_size=self._batch_size,
initial_state=self._decoder_initial_state,
mode=self._mode,
dtype=self._hparams.dtype,
fusion_type='linear_fusion',
write_attention_alignment=self._hparams.write_attention_alignment)
else:
cells = self._decoder_cells
initial_state = self._decoder_initial_state
self._decoder_inference = seq2seq.BasicDecoder(
cell=cells,
helper=self._helper_greedy,
initial_state=initial_state,
output_layer=self._dense_layer)
outputs, states, lengths = seq2seq.dynamic_decode(
self._decoder_inference,
impute_finished=True,
swap_memory=False,
maximum_iterations=self._hparams.max_label_length)
self.inference_outputs = outputs.rnn_output
self.inference_predicted_ids = outputs.sample_id
if self._hparams.write_attention_alignment is True:
self.attention_summary = self._create_attention_alignments_summary(states)
示例3: _build_decoder_greedy
# 需要導入模塊: from tensorflow.contrib import seq2seq [as 別名]
# 或者: from tensorflow.contrib.seq2seq import GreedyEmbeddingHelper [as 別名]
def _build_decoder_greedy(self):
batch_size, _ = tf.unstack(tf.shape(self._labels))
self._helper_greedy = seq2seq.GreedyEmbeddingHelper(
embedding=self._embedding_matrix,
start_tokens=tf.tile([self._GO_ID], [batch_size]),
end_token=self._EOS_ID)
if self._hparams.enable_attention is True:
attention_mechanisms, layer_sizes = self._create_attention_mechanisms()
attention_cells = seq2seq.AttentionWrapper(
cell=self._decoder_cells,
attention_mechanism=attention_mechanisms,
attention_layer_size=layer_sizes,
initial_cell_state=self._decoder_initial_state,
alignment_history=self._hparams.write_attention_alignment,
output_attention=self._output_attention
)
attn_zero = attention_cells.zero_state(
dtype=self._hparams.dtype, batch_size=batch_size
)
initial_state = attn_zero.clone(
cell_state=self._decoder_initial_state
)
cells = attention_cells
else:
cells = self._decoder_cells
initial_state = self._decoder_initial_state
self._decoder_inference = seq2seq.BasicDecoder(
cell=cells,
helper=self._helper_greedy,
initial_state=initial_state,
output_layer=self._dense_layer)
outputs, states, lengths = seq2seq.dynamic_decode(
self._decoder_inference,
impute_finished=True,
swap_memory=False,
maximum_iterations=self._hparams.max_label_length)
# self._result = outputs, states, lengths
self.inference_outputs = outputs.rnn_output
self.inference_predicted_ids = outputs.sample_id
if self._hparams.write_attention_alignment is True:
self.attention_summary = self._create_attention_alignments_summary(states)
示例4: _build_model
# 需要導入模塊: from tensorflow.contrib import seq2seq [as 別名]
# 或者: from tensorflow.contrib.seq2seq import GreedyEmbeddingHelper [as 別名]
def _build_model(self):
with tf.variable_scope("embeddings"):
self.source_embs = tf.get_variable(name="source_embs", shape=[self.cfg.source_vocab_size, self.cfg.emb_dim],
dtype=tf.float32, trainable=True)
self.target_embs = tf.get_variable(name="embeddings", shape=[self.cfg.vocab_size, self.cfg.emb_dim],
dtype=tf.float32, trainable=True)
source_emb = tf.nn.embedding_lookup(self.source_embs, self.enc_source)
target_emb = tf.nn.embedding_lookup(self.target_embs, self.dec_target_in)
print("source embedding shape: {}".format(source_emb.get_shape().as_list()))
print("target input embedding shape: {}".format(target_emb.get_shape().as_list()))
with tf.variable_scope("encoder"):
if self.cfg.use_bi_rnn:
with tf.variable_scope("bi-directional_rnn"):
cell_fw = GRUCell(self.cfg.num_units) if self.cfg.cell_type == "gru" else \
LSTMCell(self.cfg.num_units)
cell_bw = GRUCell(self.cfg.num_units) if self.cfg.cell_type == "gru" else \
LSTMCell(self.cfg.num_units)
bi_outputs, _ = bidirectional_dynamic_rnn(cell_fw, cell_bw, source_emb, dtype=tf.float32,
sequence_length=self.enc_seq_len)
source_emb = tf.concat(bi_outputs, axis=-1)
print("bi-directional rnn output shape: {}".format(source_emb.get_shape().as_list()))
input_project = tf.layers.Dense(units=self.cfg.num_units, dtype=tf.float32, name="input_projection")
source_emb = input_project(source_emb)
print("encoder input projection shape: {}".format(source_emb.get_shape().as_list()))
enc_cells = self._create_encoder_cell()
self.enc_outputs, self.enc_states = dynamic_rnn(enc_cells, source_emb, sequence_length=self.enc_seq_len,
dtype=tf.float32)
print("encoder output shape: {}".format(self.enc_outputs.get_shape().as_list()))
with tf.variable_scope("decoder"):
self.max_dec_seq_len = tf.reduce_max(self.dec_seq_len, name="max_dec_seq_len")
self.dec_cells, self.dec_init_states = self._create_decoder_cell()
# define input and output projection layer
input_project = tf.layers.Dense(units=self.cfg.num_units, name="input_projection")
self.dense_layer = tf.layers.Dense(units=self.cfg.vocab_size, name="output_projection")
if self.mode == "train": # either "train" or "decode"
# for training
target_emb = input_project(target_emb)
train_helper = TrainingHelper(target_emb, sequence_length=self.dec_seq_len, name="train_helper")
train_decoder = BasicDecoder(self.dec_cells, helper=train_helper, output_layer=self.dense_layer,
initial_state=self.dec_init_states)
self.dec_output, _, _ = dynamic_decode(train_decoder, impute_finished=True,
maximum_iterations=self.max_dec_seq_len)
print("decoder output shape: {} (vocab size)".format(self.dec_output.rnn_output.get_shape().as_list()))
# for decode
start_token = tf.ones(shape=[self.batch_size, ], dtype=tf.int32) * self.cfg.target_dict[GO]
end_token = self.cfg.target_dict[EOS]
def inputs_project(inputs):
return input_project(tf.nn.embedding_lookup(self.target_embs, inputs))
dec_helper = GreedyEmbeddingHelper(embedding=inputs_project, start_tokens=start_token,
end_token=end_token)
infer_decoder = BasicDecoder(self.dec_cells, helper=dec_helper, initial_state=self.dec_init_states,
output_layer=self.dense_layer)
infer_dec_output, _, _ = dynamic_decode(infer_decoder, maximum_iterations=self.cfg.maximum_iterations)
self.dec_predicts = infer_dec_output.sample_id