本文整理匯總了Python中tensorflow.contrib.rnn.python.ops.rnn.stack_bidirectional_dynamic_rnn方法的典型用法代碼示例。如果您正苦於以下問題:Python rnn.stack_bidirectional_dynamic_rnn方法的具體用法?Python rnn.stack_bidirectional_dynamic_rnn怎麽用?Python rnn.stack_bidirectional_dynamic_rnn使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.contrib.rnn.python.ops.rnn
的用法示例。
在下文中一共展示了rnn.stack_bidirectional_dynamic_rnn方法的6個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: encode
# 需要導入模塊: from tensorflow.contrib.rnn.python.ops import rnn [as 別名]
# 或者: from tensorflow.contrib.rnn.python.ops.rnn import stack_bidirectional_dynamic_rnn [as 別名]
def encode(self, inputs, sequence_length, **kwargs):
cell_fw = training_utils.get_rnn_cell(**self.params["rnn_cell"])
cell_bw = training_utils.get_rnn_cell(**self.params["rnn_cell"])
cells_fw = _unpack_cell(cell_fw)
cells_bw = _unpack_cell(cell_bw)
result = rnn.stack_bidirectional_dynamic_rnn(
cells_fw=cells_fw,
cells_bw=cells_bw,
inputs=inputs,
dtype=tf.float32,
sequence_length=sequence_length,
**kwargs)
outputs_concat, _output_state_fw, _output_state_bw = result
final_state = (_output_state_fw, _output_state_bw)
return EncoderOutput(
outputs=outputs_concat,
final_state=final_state,
attention_values=outputs_concat,
attention_values_length=sequence_length)
示例2: build_net_aux
# 需要導入模塊: from tensorflow.contrib.rnn.python.ops import rnn [as 別名]
# 或者: from tensorflow.contrib.rnn.python.ops.rnn import stack_bidirectional_dynamic_rnn [as 別名]
def build_net_aux(self, inputs, lengths):
outputs = tf.reshape(inputs, [self._config.batch_size, -1, self._config.input_size])
# BLSTM layer
with tf.variable_scope('blstm_aux'):
def lstm_cell():
if not self._infer and self._config.keep_prob < 1.0:
return tf.contrib.rnn.DropoutWrapper(tf.contrib.rnn.BasicLSTMCell(self._config.aux_hidden_size), output_keep_prob=self._config.keep_prob)
else:
return tf.contrib.rnn.BasicLSTMCell(self._config.aux_hidden_size)
# tf.nn.rnn_cell.MultiRNNCell in r1.12
lstm_fw_cell = tf.contrib.rnn.MultiRNNCell([lstm_cell() for _ in range(self._config.rnn_num_layers)], state_is_tuple=True)
lstm_bw_cell = tf.contrib.rnn.MultiRNNCell([lstm_cell() for _ in range(self._config.rnn_num_layers)], state_is_tuple=True)
lstm_fw_cell = self._unpack_cell(lstm_fw_cell)
lstm_bw_cell = self._unpack_cell(lstm_bw_cell)
outputs, fw_final_states, bw_final_states = rnn.stack_bidirectional_dynamic_rnn(cells_fw=lstm_fw_cell, cells_bw=lstm_bw_cell, inputs=outputs, dtype=tf.float32,
sequence_length=lengths)
outputs = tf.reshape(outputs, [-1, 2*self._config.aux_hidden_size]) # transform blstm outputs into right output size
with tf.variable_scope('layer2_aux'):
weights2, biases2 = self._weight_and_bias(2*self._config.aux_hidden_size, self._config.aux_hidden_size)
outputs = tf.nn.relu(tf.matmul(outputs, weights2) + biases2)
with tf.variable_scope('layer3_aux'):
weights3, biases3 = self._weight_and_bias(self._config.aux_hidden_size, self._config.aux_output_size)
outputs = tf.matmul(outputs, weights3) + biases3
outputs = tf.reshape(outputs, [self._config.batch_size, -1, self._config.aux_output_size])
# average over the frames to get the speaker embedding
spk_embed = tf.reduce_sum(outputs, 1)/tf.reshape(tf.to_float(self._lengths_aux), (-1,1))
return spk_embed
示例3: _unpack_cell
# 需要導入模塊: from tensorflow.contrib.rnn.python.ops import rnn [as 別名]
# 或者: from tensorflow.contrib.rnn.python.ops.rnn import stack_bidirectional_dynamic_rnn [as 別名]
def _unpack_cell(cell):
"""Unpack the cells because the stack_bidirectional_dynamic_rnn
expects a list of cells, one per layer."""
if isinstance(cell, tf.contrib.rnn.MultiRNNCell):
return cell._cells #pylint: disable=W0212
else:
return [cell]
開發者ID:akanimax,項目名稱:natural-language-summary-generation-from-structured-data,代碼行數:9,代碼來源:rnn_encoder.py
示例4: encode
# 需要導入模塊: from tensorflow.contrib.rnn.python.ops import rnn [as 別名]
# 或者: from tensorflow.contrib.rnn.python.ops.rnn import stack_bidirectional_dynamic_rnn [as 別名]
def encode(self, inputs, sequence_length, **kwargs):
scope = tf.get_variable_scope()
scope.set_initializer(tf.random_uniform_initializer(
-self.params["init_scale"],
self.params["init_scale"]))
cell_fw = training_utils.get_rnn_cell(**self.params["rnn_cell"])
cell_bw = training_utils.get_rnn_cell(**self.params["rnn_cell"])
cells_fw = _unpack_cell(cell_fw)
cells_bw = _unpack_cell(cell_bw)
result = rnn.stack_bidirectional_dynamic_rnn(
cells_fw=cells_fw,
cells_bw=cells_bw,
inputs=inputs,
dtype=tf.float32,
sequence_length=sequence_length,
**kwargs)
outputs_concat, _output_state_fw, _output_state_bw = result
final_state = (_output_state_fw, _output_state_bw)
return EncoderOutput(
outputs=outputs_concat,
final_state=final_state,
attention_values=outputs_concat,
attention_values_length=sequence_length)
開發者ID:akanimax,項目名稱:natural-language-summary-generation-from-structured-data,代碼行數:28,代碼來源:rnn_encoder.py
示例5: _build_model_op
# 需要導入模塊: from tensorflow.contrib.rnn.python.ops import rnn [as 別名]
# 或者: from tensorflow.contrib.rnn.python.ops.rnn import stack_bidirectional_dynamic_rnn [as 別名]
def _build_model_op(self):
with tf.variable_scope("bi_directional_rnn"):
cell_fw = self._create_rnn_cell()
cell_bw = self._create_rnn_cell()
if self.cfg["use_stack_rnn"]:
rnn_outs, *_ = stack_bidirectional_dynamic_rnn(cell_fw, cell_bw, self.word_emb, dtype=tf.float32,
sequence_length=self.seq_len)
else:
rnn_outs, *_ = bidirectional_dynamic_rnn(cell_fw, cell_bw, self.word_emb, sequence_length=self.seq_len,
dtype=tf.float32)
rnn_outs = tf.concat(rnn_outs, axis=-1)
rnn_outs = tf.layers.dropout(rnn_outs, rate=self.drop_rate, training=self.is_train)
if self.cfg["use_residual"]:
word_project = tf.layers.dense(self.word_emb, units=2 * self.cfg["num_units"], use_bias=False)
rnn_outs = rnn_outs + word_project
outputs = layer_normalize(rnn_outs) if self.cfg["use_layer_norm"] else rnn_outs
print("rnn output shape: {}".format(outputs.get_shape().as_list()))
if self.cfg["use_attention"] == "self_attention":
with tf.variable_scope("self_attention"):
attn_outs = multi_head_attention(outputs, outputs, self.cfg["num_heads"], self.cfg["attention_size"],
drop_rate=self.drop_rate, is_train=self.is_train)
if self.cfg["use_residual"]:
attn_outs = attn_outs + outputs
outputs = layer_normalize(attn_outs) if self.cfg["use_layer_norm"] else attn_outs
print("self-attention output shape: {}".format(outputs.get_shape().as_list()))
elif self.cfg["use_attention"] == "normal_attention":
with tf.variable_scope("normal_attention"):
context = tf.transpose(outputs, [1, 0, 2])
p_context = tf.layers.dense(outputs, units=2 * self.cfg["num_units"], use_bias=False)
p_context = tf.transpose(p_context, [1, 0, 2])
attn_cell = AttentionCell(self.cfg["num_units"], context, p_context) # time major based
attn_outs, _ = dynamic_rnn(attn_cell, context, sequence_length=self.seq_len, time_major=True,
dtype=tf.float32)
outputs = tf.transpose(attn_outs, [1, 0, 2])
print("attention output shape: {}".format(outputs.get_shape().as_list()))
with tf.variable_scope("project"):
self.logits = tf.layers.dense(outputs, units=self.tag_vocab_size, use_bias=True)
print("logits shape: {}".format(self.logits.get_shape().as_list()))
示例6: __call__
# 需要導入模塊: from tensorflow.contrib.rnn.python.ops import rnn [as 別名]
# 或者: from tensorflow.contrib.rnn.python.ops.rnn import stack_bidirectional_dynamic_rnn [as 別名]
def __call__(self, inputs, seq_len):
with tf.variable_scope(self.scope):
output, *_ = stack_bidirectional_dynamic_rnn(self.cells_fw, self.cells_bw, inputs, sequence_length=seq_len,
dtype=tf.float32)
return output