當前位置: 首頁>>代碼示例>>Python>>正文


Python rnn.RNNCell方法代碼示例

本文整理匯總了Python中tensorflow.contrib.rnn.RNNCell方法的典型用法代碼示例。如果您正苦於以下問題:Python rnn.RNNCell方法的具體用法?Python rnn.RNNCell怎麽用?Python rnn.RNNCell使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.contrib.rnn的用法示例。


在下文中一共展示了rnn.RNNCell方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: get_rnn_cell_trainable_variables

# 需要導入模塊: from tensorflow.contrib import rnn [as 別名]
# 或者: from tensorflow.contrib.rnn import RNNCell [as 別名]
def get_rnn_cell_trainable_variables(cell):
    """Returns the list of trainable variables of an RNN cell.

    Args:
        cell: an instance of :tf_main:`RNNCell <nn/rnn_cell/RNNCell>`.

    Returns:
        list: trainable variables of the cell.
    """
    cell_ = cell
    while True:
        try:
            return cell_.trainable_variables
        except AttributeError:
        # Cell wrappers (e.g., `DropoutWrapper`) cannot directly access to
        # `trainable_variables` as they don't initialize superclass
        # (tf==v1.3). So try to access through the cell in the wrapper.
            cell_ = cell._cell  # pylint: disable=protected-access 
開發者ID:qkaren,項目名稱:Counterfactual-StoryRW,代碼行數:20,代碼來源:layers.py

示例2: _get_single_cell

# 需要導入模塊: from tensorflow.contrib import rnn [as 別名]
# 或者: from tensorflow.contrib.rnn import RNNCell [as 別名]
def _get_single_cell(cell_type, num_units):
  """Constructs and return a single `RNNCell`.

  Args:
    cell_type: Either a string identifying the `RNNCell` type or a subclass of
      `RNNCell`.
    num_units: The number of units in the `RNNCell`.
  Returns:
    An initialized `RNNCell`.
  Raises:
    ValueError: `cell_type` is an invalid `RNNCell` name.
    TypeError: `cell_type` is not a string or a subclass of `RNNCell`.
  """
  cell_type = _CELL_TYPES.get(cell_type, cell_type)
  if not cell_type or not issubclass(cell_type, contrib_rnn.RNNCell):
    raise ValueError('The supported cell types are {}; got {}'.format(
        list(_CELL_TYPES.keys()), cell_type))
  return cell_type(num_units=num_units) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:20,代碼來源:rnn_common.py

示例3: apply_dropout

# 需要導入模塊: from tensorflow.contrib import rnn [as 別名]
# 或者: from tensorflow.contrib.rnn import RNNCell [as 別名]
def apply_dropout(
    cell, input_keep_probability, output_keep_probability, random_seed=None):
  """Apply dropout to the outputs and inputs of `cell`.

  Args:
    cell: An `RNNCell`.
    input_keep_probability: Probability to keep inputs to `cell`. If `None`,
      no dropout is applied.
    output_keep_probability: Probability to keep outputs of `cell`. If `None`,
      no dropout is applied.
    random_seed: Seed for random dropout.

  Returns:
    An `RNNCell`, the result of applying the supplied dropouts to `cell`.
  """
  input_prob_none = input_keep_probability is None
  output_prob_none = output_keep_probability is None
  if input_prob_none and output_prob_none:
    return cell
  if input_prob_none:
    input_keep_probability = 1.0
  if output_prob_none:
    output_keep_probability = 1.0
  return contrib_rnn.DropoutWrapper(
      cell, input_keep_probability, output_keep_probability, random_seed) 
開發者ID:abhisuri97,項目名稱:auto-alt-text-lambda-api,代碼行數:27,代碼來源:dynamic_rnn_estimator.py

示例4: __init__

# 需要導入模塊: from tensorflow.contrib import rnn [as 別名]
# 或者: from tensorflow.contrib.rnn import RNNCell [as 別名]
def __init__(self, prenet, attention_mechanism, rnn_cell, frame_projection, stop_projection, mask_finished=False):
		"""Initialize decoder parameters

		Args:
		    prenet: A tensorflow fully connected layer acting as the decoder pre-net
		    attention_mechanism: A _BaseAttentionMechanism instance, usefull to 
			    learn encoder-decoder alignments
		    rnn_cell: Instance of RNNCell, main body of the decoder
		    frame_projection: tensorflow fully connected layer with r * num_mels output units
		    stop_projection: tensorflow fully connected layer, expected to project to a scalar 
			    and through a sigmoid activation
			mask_finished: Boolean, Whether to mask decoder frames after the <stop_token>
		"""
		super(TacotronDecoderCell, self).__init__()
		#Initialize decoder layers
		self._prenet = prenet
		self._attention_mechanism = attention_mechanism
		self._cell = rnn_cell
		self._frame_projection = frame_projection
		self._stop_projection = stop_projection

		self._mask_finished = mask_finished
		self._attention_layer_size = self._attention_mechanism.values.get_shape()[-1].value 
開發者ID:rishikksh20,項目名稱:vae_tacotron2,代碼行數:25,代碼來源:Architecture_wrappers.py

示例5: __init__

# 需要導入模塊: from tensorflow.contrib import rnn [as 別名]
# 或者: from tensorflow.contrib.rnn import RNNCell [as 別名]
def __init__(self, is_training, attention_mechanism, rnn_cell, frame_projection = None, stop_projection = None):
    """Initialize decoder parameters

    Args:
        prenet: A tensorflow fully connected layer acting as the decoder pre-net
        attention_mechanism: A _BaseAttentionMechanism instance, usefull to
          learn encoder-decoder alignments
        rnn_cell: Instance of RNNCell, main body of the decoder
        frame_projection: tensorflow fully connected layer with r * num_mels output units
        stop_projection: tensorflow fully connected layer, expected to project to a scalar
          and through a sigmoid activation
      mask_finished: Boolean, Whether to mask decoder frames after the <stop_token>
    """
    super(TacotronDecoderWrapper, self).__init__()
    #Initialize decoder layers
    self._training = is_training
    self._attention_mechanism = attention_mechanism
    self._cell = rnn_cell
    self._frame_projection = frame_projection
    self._stop_projection = stop_projection

    self._attention_layer_size = self._attention_mechanism.values.get_shape()[-1].value 
開發者ID:youssefsharief,項目名稱:arabic-tacotron-tts,代碼行數:24,代碼來源:rnn_wrappers.py

示例6: __init__

# 需要導入模塊: from tensorflow.contrib import rnn [as 別名]
# 或者: from tensorflow.contrib.rnn import RNNCell [as 別名]
def __init__(self, prenet, attention_mechanism, rnn_cell, frame_projection, stop_projection):
		"""Initialize decoder parameters

		Args:
		    prenet: A tensorflow fully connected layer acting as the decoder pre-net
		    attention_mechanism: A _BaseAttentionMechanism instance, usefull to
			    learn encoder-decoder alignments
		    rnn_cell: Instance of RNNCell, main body of the decoder
		    frame_projection: tensorflow fully connected layer with r * num_mels output units
		    stop_projection: tensorflow fully connected layer, expected to project to a scalar
			    and through a sigmoid activation
			mask_finished: Boolean, Whether to mask decoder frames after the <stop_token>
		"""
		super(TacotronDecoderCell, self).__init__()
		#Initialize decoder layers
		self._prenet = prenet
		self._attention_mechanism = attention_mechanism
		self._cell = rnn_cell
		self._frame_projection = frame_projection
		self._stop_projection = stop_projection

		self._attention_layer_size = self._attention_mechanism.values.get_shape()[-1].value 
開發者ID:Rayhane-mamah,項目名稱:Tacotron-2,代碼行數:24,代碼來源:Architecture_wrappers.py

示例7: get_rnn_cell_trainable_variables

# 需要導入模塊: from tensorflow.contrib import rnn [as 別名]
# 或者: from tensorflow.contrib.rnn import RNNCell [as 別名]
def get_rnn_cell_trainable_variables(cell):
    """Returns the list of trainable variables of an RNN cell.

    Args:
        cell: an instance of :tf_main:`RNNCell <nn/rnn_cell/RNNCell>`.

    Returns:
        list: trainable variables of the cell.
    """
    cell_ = cell
    while True:
        try:
            return cell_.trainable_variables
        except AttributeError:
            # Cell wrappers (e.g., `DropoutWrapper`) cannot directly access to
            # `trainable_variables` as they don't initialize superclass
            # (tf==v1.3). So try to access through the cell in the wrapper.
            cell_ = cell._cell  # pylint: disable=protected-access 
開發者ID:asyml,項目名稱:texar,代碼行數:20,代碼來源:layers.py

示例8: __init__

# 需要導入模塊: from tensorflow.contrib import rnn [as 別名]
# 或者: from tensorflow.contrib.rnn import RNNCell [as 別名]
def __init__(self, prenet, attention_mechanism, rnn_cell, frame_projection, stop_projection):
        """Initialize decoder parameters

        Args:
            prenet: A tensorflow fully connected layer acting as the decoder pre-net
            attention_mechanism: A _BaseAttentionMechanism instance, usefull to
                learn encoder-decoder alignments
            rnn_cell: Instance of RNNCell, main body of the decoder
            frame_projection: tensorflow fully connected layer with r * num_mels output units
            stop_projection: tensorflow fully connected layer, expected to project to a scalar
                and through a sigmoid activation
            mask_finished: Boolean, Whether to mask decoder frames after the <stop_token>
        """
        super(TacotronDecoderCell, self).__init__()
        # Initialize decoder layers
        self._prenet = prenet
        self._attention_mechanism = attention_mechanism
        self._cell = rnn_cell
        self._frame_projection = frame_projection
        self._stop_projection = stop_projection

        self._attention_layer_size = self._attention_mechanism.values.get_shape()[-1].value 
開發者ID:cnlinxi,項目名稱:style-token_tacotron2,代碼行數:24,代碼來源:Architecture_wrappers.py

示例9: construct_rnn_cell

# 需要導入模塊: from tensorflow.contrib import rnn [as 別名]
# 或者: from tensorflow.contrib.rnn import RNNCell [as 別名]
def construct_rnn_cell(num_units, cell_type='basic_rnn',
                       dropout_keep_probabilities=None):
  """Constructs cells, applies dropout and assembles a `MultiRNNCell`.

  The cell type chosen by DynamicRNNEstimator.__init__() is the same as
  returned by this function when called with the same arguments.

  Args:
    num_units: A single `int` or a list/tuple of `int`s. The size of the
      `RNNCell`s.
    cell_type: A string identifying the `RNNCell` type or a subclass of
      `RNNCell`.
    dropout_keep_probabilities: a list of dropout probabilities or `None`. If a
      list is given, it must have length `len(cell_type) + 1`.

  Returns:
    An initialized `RNNCell`.
  """
  if not isinstance(num_units, (list, tuple)):
    num_units = (num_units,)

  cells = [_get_single_cell(cell_type, n) for n in num_units]
  if dropout_keep_probabilities:
    cells = apply_dropout(cells, dropout_keep_probabilities)
  if len(cells) == 1:
    return cells[0]
  return contrib_rnn.MultiRNNCell(cells) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:29,代碼來源:rnn_common.py

示例10: apply_dropout

# 需要導入模塊: from tensorflow.contrib import rnn [as 別名]
# 或者: from tensorflow.contrib.rnn import RNNCell [as 別名]
def apply_dropout(cells, dropout_keep_probabilities, random_seed=None):
  """Applies dropout to the outputs and inputs of `cell`.

  Args:
    cells: A list of `RNNCell`s.
    dropout_keep_probabilities: a list whose elements are either floats in
    `[0.0, 1.0]` or `None`. It must have length one greater than `cells`.
    random_seed: Seed for random dropout.

  Returns:
    A list of `RNNCell`s, the result of applying the supplied dropouts.

  Raises:
    ValueError: If `len(dropout_keep_probabilities) != len(cells) + 1`.
  """
  if len(dropout_keep_probabilities) != len(cells) + 1:
    raise ValueError(
        'The number of dropout probabilites must be one greater than the '
        'number of cells. Got {} cells and {} dropout probabilities.'.format(
            len(cells), len(dropout_keep_probabilities)))
  wrapped_cells = [
      contrib_rnn.DropoutWrapper(cell, prob, 1.0, seed=random_seed)
      for cell, prob in zip(cells[:-1], dropout_keep_probabilities[:-2])
  ]
  wrapped_cells.append(
      contrib_rnn.DropoutWrapper(cells[-1], dropout_keep_probabilities[-2],
                                 dropout_keep_probabilities[-1]))
  return wrapped_cells 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:30,代碼來源:rnn_common.py

示例11: _to_rnn_cell

# 需要導入模塊: from tensorflow.contrib import rnn [as 別名]
# 或者: from tensorflow.contrib.rnn import RNNCell [as 別名]
def _to_rnn_cell(cell_or_type, num_units, num_layers):
  """Constructs and return an `RNNCell`.

  Args:
    cell_or_type: Either a string identifying the `RNNCell` type, a subclass of
      `RNNCell` or an instance of an `RNNCell`.
    num_units: The number of units in the `RNNCell`.
    num_layers: The number of layers in the RNN.
  Returns:
    An initialized `RNNCell`.
  Raises:
    ValueError: `cell_or_type` is an invalid `RNNCell` name.
    TypeError: `cell_or_type` is not a string or a subclass of `RNNCell`.
  """
  if isinstance(cell_or_type, contrib_rnn.RNNCell):
    return cell_or_type
  if isinstance(cell_or_type, str):
    cell_or_type = _CELL_TYPES.get(cell_or_type)
    if cell_or_type is None:
      raise ValueError('The supported cell types are {}; got {}'.format(
          list(_CELL_TYPES.keys()), cell_or_type))
  if not issubclass(cell_or_type, contrib_rnn.RNNCell):
    raise TypeError(
        'cell_or_type must be a subclass of RNNCell or one of {}.'.format(
            list(_CELL_TYPES.keys())))
  cell = cell_or_type(num_units=num_units)
  if num_layers > 1:
    cell = contrib_rnn.MultiRNNCell(
        [cell] * num_layers, state_is_tuple=True)
  return cell 
開發者ID:abhisuri97,項目名稱:auto-alt-text-lambda-api,代碼行數:32,代碼來源:dynamic_rnn_estimator.py

示例12: __init__

# 需要導入模塊: from tensorflow.contrib import rnn [as 別名]
# 或者: from tensorflow.contrib.rnn import RNNCell [as 別名]
def __init__(self, cell, mem_size, embed_size, max_n_valid_indices):
    """Constructs a `ResidualWrapper` for `cell`.
    Args:
      cell: An instance of `RNNCell`.
      mem_size: size of the memory.
      embed_size: the size/dimension of the embedding in each memory location.
      max_n_valid_indices: maximum number of valid_indices.
    """
    self._cell = cell
    self._mem_size = mem_size
    self._embed_size = embed_size
    self._max_n_valid_indices = max_n_valid_indices 
開發者ID:crazydonkey200,項目名稱:neural-symbolic-machines,代碼行數:14,代碼來源:tf_utils.py

示例13: define_rnn_cell

# 需要導入模塊: from tensorflow.contrib import rnn [as 別名]
# 或者: from tensorflow.contrib.rnn import RNNCell [as 別名]
def define_rnn_cell(cell_class, num_units, num_layers=1, keep_prob=1.0,
                    input_keep_prob=None, output_keep_prob=None):
    if input_keep_prob is None:
        input_keep_prob = keep_prob
    if output_keep_prob is None:
        output_keep_prob = keep_prob

    cells = []
    for _ in range(num_layers):
        if cell_class == 'GRU':
            cell = GRUCell(num_units=num_units)
        elif cell_class == 'LSTM':
            cell = LSTMCell(num_units=num_units)
        else:
            cell = RNNCell(num_units=num_units)

        if keep_prob < 1.0:
            cell = DropoutWrapper(cell=cell, input_keep_prob=input_keep_prob, output_keep_prob=output_keep_prob)
        cells.append(cell)

    if len(cells) > 1:
        final_cell = MultiRNNCell(cells)
    else:
        final_cell = cells[0]

    return final_cell 
開發者ID:siat-nlp,項目名稱:TransDG,代碼行數:28,代碼來源:seq_helper.py

示例14: __init__

# 需要導入模塊: from tensorflow.contrib import rnn [as 別名]
# 或者: from tensorflow.contrib.rnn import RNNCell [as 別名]
def __init__(self, cell, attention_mechanism, dropout, attn_cell_config,
        num_proj, dtype=tf.float32):
        """
        Args:
            cell: (RNNCell)
            attention_mechanism: (AttentionMechanism)
            dropout: (tf.float)
            attn_cell_config: (dict) hyper params

        """
        # variables and tensors
        self._cell                = cell
        self._attention_mechanism = attention_mechanism
        self._dropout             = dropout

        # hyperparameters and shapes
        self._n_channels     = self._attention_mechanism._n_channels
        self._dim_e          = attn_cell_config["dim_e"]
        self._dim_o          = attn_cell_config["dim_o"]
        self._num_units      = attn_cell_config["num_units"]
        self._dim_embeddings = attn_cell_config["dim_embeddings"]
        self._num_proj       = num_proj
        self._dtype          = dtype

        # for RNNCell
        self._state_size = AttentionState(self._cell._state_size, self._dim_o) 
開發者ID:guillaumegenthial,項目名稱:im2latex,代碼行數:28,代碼來源:attention_cell.py

示例15: __init__

# 需要導入模塊: from tensorflow.contrib import rnn [as 別名]
# 或者: from tensorflow.contrib.rnn import RNNCell [as 別名]
def __init__(self, cell: RNNCell, prenets: Tuple[PreNet]):
        super(DecoderPreNetWrapper, self).__init__()
        self._cell = cell
        self.prenets = prenets 
開發者ID:nii-yamagishilab,項目名稱:tacotron2,代碼行數:6,代碼來源:rnn_wrappers.py


注:本文中的tensorflow.contrib.rnn.RNNCell方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。