本文整理匯總了Python中tensorflow.contrib.predictor.from_saved_model方法的典型用法代碼示例。如果您正苦於以下問題:Python predictor.from_saved_model方法的具體用法?Python predictor.from_saved_model怎麽用?Python predictor.from_saved_model使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.contrib.predictor
的用法示例。
在下文中一共展示了predictor.from_saved_model方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: to_predictor
# 需要導入模塊: from tensorflow.contrib import predictor [as 別名]
# 或者: from tensorflow.contrib.predictor import from_saved_model [as 別名]
def to_predictor(estimator, directory=DEFAULT_EXPORT_DIRECTORY):
""" Exports given estimator as predictor into the given directory
and returns associated tf.predictor instance.
:param estimator: Estimator to export.
:param directory: (Optional) path to write exported model into.
"""
input_provider = InputProviderFactory.get(estimator.params)
def receiver():
features = input_provider.get_input_dict_placeholders()
return tf.estimator.export.ServingInputReceiver(features, features)
estimator.export_saved_model(directory, receiver)
versions = [
model for model in Path(directory).iterdir()
if model.is_dir() and 'temp' not in str(model)]
latest = str(sorted(versions)[-1])
return predictor.from_saved_model(latest)
示例2: _annotate_long_answer
# 需要導入模塊: from tensorflow.contrib import predictor [as 別名]
# 或者: from tensorflow.contrib.predictor import from_saved_model [as 別名]
def _annotate_long_answer(predict_fn, question, contexts):
"""Applies the model to the (question, contexts) and returns long answer.
Args:
predict_fn: Predictor from tf.contrib.predictor.from_saved_model.
question: string.
contexts: List of strings.
Returns:
long_answer_idx: integer.
long_answer_score: float.
"""
# The inputs are not tokenized here because there are multiple contexts.
inputs = {"question": question, "context": contexts}
outputs = predict_fn(inputs)
long_answer_idx = outputs["idx"]
long_answer_score = outputs["score"]
return long_answer_idx, float(long_answer_score)
示例3: _annotate_short_answer
# 需要導入模塊: from tensorflow.contrib import predictor [as 別名]
# 或者: from tensorflow.contrib.predictor import from_saved_model [as 別名]
def _annotate_short_answer(predict_fn, question_tokens, context_tokens):
"""Applies the model to the (question, contexts) and returns long answer.
Args:
predict_fn: Predictor from tf.contrib.predictor.from_saved_model.
question_tokens: List of strings.
context_tokens: List of strings.
Returns:
long_answer_idx: integer.
long_answer_score: float.
"""
# The inputs are tokenized unlike in the long answer case, since the goal
# is to pick out a particular span in a single context.
inputs = {"question": question_tokens, "context": context_tokens}
outputs = predict_fn(inputs)
start_idx = outputs["start_idx"]
end_idx = outputs["end_idx"]
short_answer_score = outputs["score"]
return start_idx, end_idx, float(short_answer_score)
示例4: __init__
# 需要導入模塊: from tensorflow.contrib import predictor [as 別名]
# 或者: from tensorflow.contrib.predictor import from_saved_model [as 別名]
def __init__(self, path=DEFAULT_MODEL_PATH):
logger.info('Loading model from: {}...'.format(path))
# Parameters for inference (need to be the same values the model was trained with)
self.max_seq_length = 512
self.doc_stride = 128
self.max_query_length = 64
self.max_answer_length = 30
# Initialize the tokenizer
self.tokenizer = FullTokenizer(
vocab_file='assets/vocab.txt', do_lower_case=True)
self.predict_fn = predictor.from_saved_model(DEFAULT_MODEL_PATH)
logger.info('Loaded model')
示例5: load_model
# 需要導入模塊: from tensorflow.contrib import predictor [as 別名]
# 或者: from tensorflow.contrib.predictor import from_saved_model [as 別名]
def load_model(self):
self.graph = tf.Graph()
with self.graph.as_default():
self.predict_fn = predictor.from_saved_model(self.config['model'])
示例6: __init__
# 需要導入模塊: from tensorflow.contrib import predictor [as 別名]
# 或者: from tensorflow.contrib.predictor import from_saved_model [as 別名]
def __init__(self, conf, **kwargs):
self.conf = conf
for attr in conf:
setattr(self, attr, conf[attr])
self.zdy = {}
#init embedding
self.init_embedding()
#load train data
csv = pd.read_csv(self.ori_path, header = 0, sep="\t", error_bad_lines=False)
if 'text' in csv.keys() and 'target' in csv.keys():
#format: text \t target
#for this format, the size for each class should be larger than 2
self.text_list = list(csv['text'])
self.label_list = list(csv['target'])
elif 'text_a' in csv.keys() and 'text_b' in csv.keys() and'target' in csv.keys():
#format: text_a \t text_b \t target
#for this format, target value can only be choosen from 0 or 1
self.text_a_list = list(csv['text_a'])
self.text_b_list = list(csv['text_b'])
self.text_list = self.text_a_list + self.text_b_list
self.label_list = list(csv['target'])
subdirs = [os.path.join(self.export_dir_path,x) for x in os.listdir(self.export_dir_path)
if 'temp' not in(x)]
latest = str(sorted(subdirs)[-1])
self.predict_fn = predictor.from_saved_model(latest)
示例7: load
# 需要導入模塊: from tensorflow.contrib import predictor [as 別名]
# 或者: from tensorflow.contrib.predictor import from_saved_model [as 別名]
def load(cls,
meta,
model_dir=None, # type: Text
model_metadata=None, # type: Metadata
cached_component=None, # type: Optional[Component]
**kwargs # type: **Any
):
# type: (...) -> EmbeddingBertIntentAdanetClassifier
config_proto = cls.get_config_proto(meta)
print("bert model loaded")
if model_dir and meta.get("file"):
file_name = meta.get("file")
# tensorflow.contrib.predictor to load the model file which may has 10x speed up in predict time
predict = Pred.from_saved_model(export_dir=os.path.join(model_dir,file_name),config=config_proto)
with io.open(os.path.join(
model_dir,
file_name + "_inv_intent_dict.pkl"), 'rb') as f:
inv_intent_dict = pickle.load(f)
with io.open(os.path.join(
model_dir,
file_name + "_encoded_all_intents.pkl"), 'rb') as f:
encoded_all_intents = pickle.load(f)
return EmbeddingBertIntentEstimatorClassifier(
component_config=meta,
inv_intent_dict=inv_intent_dict,
encoded_all_intents=encoded_all_intents,
predictor=predict
)
else:
logger.warning("Failed to load nlu model. Maybe path {} "
"doesn't exist"
"".format(os.path.abspath(model_dir)))
return EmbeddingBertIntentEstimatorClassifier(component_config=meta)
示例8: test_create_serving_input_receiver_numpy
# 需要導入模塊: from tensorflow.contrib import predictor [as 別名]
# 或者: from tensorflow.contrib.predictor import from_saved_model [as 別名]
def test_create_serving_input_receiver_numpy(self):
(model_dir, mock_t2r_model,
prediction_ref) = self._train_and_eval_reference_model('numpy')
exporter = default_export_generator.DefaultExportGenerator()
exporter.set_specification_from_model(mock_t2r_model)
# Export trained serving estimator.
estimator_exporter = tf.estimator.Estimator(
model_fn=mock_t2r_model.model_fn,
config=tf.estimator.RunConfig(model_dir=model_dir))
serving_input_receiver_fn = (
exporter.create_serving_input_receiver_numpy_fn())
exported_savedmodel_path = estimator_exporter.export_saved_model(
export_dir_base=model_dir,
serving_input_receiver_fn=serving_input_receiver_fn,
checkpoint_path=tf.train.latest_checkpoint(model_dir))
# Load trained and exported serving estimator, run prediction and assert
# it is the same as before exporting.
feed_predictor_fn = contrib_predictor.from_saved_model(
exported_savedmodel_path)
mock_input_generator = mocks.MockInputGenerator(batch_size=BATCH_SIZE)
features, labels = mock_input_generator.create_numpy_data()
for pos, value in enumerate(prediction_ref):
actual = feed_predictor_fn({'x': features[pos, :].reshape(
1, -1)})['logit'].flatten()
predicted = value['logit'].flatten()
np.testing.assert_almost_equal(
actual=actual, desired=predicted, decimal=4)
if labels[pos] > 0:
self.assertGreater(predicted[0], 0)
else:
self.assertLess(predicted[0], 0)
示例9: __init__
# 需要導入模塊: from tensorflow.contrib import predictor [as 別名]
# 或者: from tensorflow.contrib.predictor import from_saved_model [as 別名]
def __init__(self, pb_path):
subdirs = [x for x in Path(pb_path).iterdir()
if x.is_dir() and 'temp' not in str(x)]
latest = str(sorted(subdirs)[-1])
self.predict_fn = predictor.from_saved_model(latest)
self.vocab_idx, self.idx_vocab = vocab_idx, idx_vocab
示例10: __init__
# 需要導入模塊: from tensorflow.contrib import predictor [as 別名]
# 或者: from tensorflow.contrib.predictor import from_saved_model [as 別名]
def __init__(self, pb_path):
subdirs = [x for x in Path(pb_path).iterdir()
if x.is_dir() and 'temp' not in str(x)]
latest_model = str(sorted(subdirs)[-1])
self.predict_fn = predictor.from_saved_model(latest_model)
示例11: instance_predict_fn
# 需要導入模塊: from tensorflow.contrib import predictor [as 別名]
# 或者: from tensorflow.contrib.predictor import from_saved_model [as 別名]
def instance_predict_fn(self):
return predictor.from_saved_model(self.model_path)
示例12: load_predict_fn
# 需要導入模塊: from tensorflow.contrib import predictor [as 別名]
# 或者: from tensorflow.contrib.predictor import from_saved_model [as 別名]
def load_predict_fn(export_dir):
global predict_fn
predict_fn = predictor.from_saved_model(export_dir)
return predict_fn
示例13: __init__
# 需要導入模塊: from tensorflow.contrib import predictor [as 別名]
# 或者: from tensorflow.contrib.predictor import from_saved_model [as 別名]
def __init__(self, model_path):
# load model
self.model_dir = model_path
self.predict_fn = predictor.from_saved_model(model_path)
示例14: _initialize_upon_import
# 需要導入模塊: from tensorflow.contrib import predictor [as 別名]
# 或者: from tensorflow.contrib.predictor import from_saved_model [as 別名]
def _initialize_upon_import():
"""Initialize / Restore Model Object."""
saved_model_path = './pipeline_tfserving/0'
return predictor.from_saved_model(saved_model_path)
# This is called unconditionally at *module import time*...
示例15: _initialize_upon_import
# 需要導入模塊: from tensorflow.contrib import predictor [as 別名]
# 或者: from tensorflow.contrib.predictor import from_saved_model [as 別名]
def _initialize_upon_import():
try:
saved_model_path = './pipeline_tfserving/0'
return predictor.from_saved_model(saved_model_path)
except Exception:
_logger.error('pipeline_invoke_python._initialize_upon_import.Exception:', exc_info=True)
return None