當前位置: 首頁>>代碼示例>>Python>>正文


Python lookup.index_table_from_tensor方法代碼示例

本文整理匯總了Python中tensorflow.contrib.lookup.index_table_from_tensor方法的典型用法代碼示例。如果您正苦於以下問題:Python lookup.index_table_from_tensor方法的具體用法?Python lookup.index_table_from_tensor怎麽用?Python lookup.index_table_from_tensor使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.contrib.lookup的用法示例。


在下文中一共展示了lookup.index_table_from_tensor方法的9個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __init__

# 需要導入模塊: from tensorflow.contrib import lookup [as 別名]
# 或者: from tensorflow.contrib.lookup import index_table_from_tensor [as 別名]
def __init__(self, speaker_list, filenames, num_epoch=1):
    with tf.device('/cpu'):
      with tf.name_scope('ByteInputPipeline'):
        self.speaker_list = tf.constant(speaker_list)
        self.table = index_table_from_tensor(mapping=self.speaker_list)

        print('{} files found'.format(len(filenames)))
        dataset = (
            tf.data.TFRecordDataset(filenames)
            .map(self._parse_function)
            .batch(1)
            .repeat(num_epoch)
        )

        self.iterator = dataset.make_initializable_iterator()
        self.x, self.y, self.f, self.w, self.t = self.iterator.get_next() 
開發者ID:JeremyCCHsu,項目名稱:vqvae-speech,代碼行數:18,代碼來源:vctk.py

示例2: _string_to_int

# 需要導入模塊: from tensorflow.contrib import lookup [as 別名]
# 或者: from tensorflow.contrib.lookup import index_table_from_tensor [as 別名]
def _string_to_int(x, vocab):
  """Given a vocabulary and a string tensor `x`, maps `x` into an int tensor.
  Args:
    x: A `Column` representing a string value.
    vocab: list of strings.

  Returns:
    A `Column` where each string value is mapped to an integer representing
    its index in the vocab. Out of vocab values are mapped to len(vocab).
  """

  def _map_to_int(x):
    """Maps string tensor into indexes using vocab.

    Args:
      x : a Tensor/SparseTensor of string.
    Returns:
      a Tensor/SparseTensor of indexes (int) of the same shape as x.
    """
    table = lookup.index_table_from_tensor(
        vocab,
        default_value=len(vocab))
    return table.lookup(x)

  return _map_to_int(x) 
開發者ID:googledatalab,項目名稱:pydatalab,代碼行數:27,代碼來源:feature_transforms.py

示例3: build_tensorize_text_fn

# 需要導入模塊: from tensorflow.contrib import lookup [as 別名]
# 或者: from tensorflow.contrib.lookup import index_table_from_tensor [as 別名]
def build_tensorize_text_fn(embeddings):
  """Builds a function to turn text into word/char ids."""
  tbl = contrib_lookup.index_table_from_tensor(
      mapping=embeddings.get_vocab(), num_oov_buckets=1)

  def fn(string_tensor):
    """Builds the output tensor dictionary."""
    out = {}
    if FLAGS.lowercase:
      string_tensor = ops.lowercase_op(string_tensor)
    out["wids"] = tf.to_int32(tbl.lookup(string_tensor))
    out["cids"] = char_utils.batch_word_to_char_ids(string_tensor, 50)
    out["len"] = tf.shape(string_tensor)[-1]
    return out

  return fn 
開發者ID:google-research,項目名稱:language,代碼行數:18,代碼來源:run_recurrent_model_boolq.py

示例4: _do_transform

# 需要導入模塊: from tensorflow.contrib import lookup [as 別名]
# 或者: from tensorflow.contrib.lookup import index_table_from_tensor [as 別名]
def _do_transform(self, input_tensor):
    table = lookup.index_table_from_tensor(
        mapping=tuple(self.lookup_config.keys),
        default_value=self.lookup_config.default_value,
        dtype=self.dtype,
        name="lookup")
    return table.lookup(input_tensor) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:9,代碼來源:feature_column.py

示例5: _string_to_int

# 需要導入模塊: from tensorflow.contrib import lookup [as 別名]
# 或者: from tensorflow.contrib.lookup import index_table_from_tensor [as 別名]
def _string_to_int(x, vocab):
  """Given a vocabulary and a string tensor `x`, maps `x` into an int tensor.
  Args:
    x: A `Column` representing a string value.
    vocab: list of strings.

  Returns:
    A `Column` where each string value is mapped to an integer representing
    its index in the vocab. Out of vocab values are mapped to len(vocab).
  """

  def _map_to_int(x):
    """Maps string tensor into indexes using vocab.

    Args:
      x : a Tensor/SparseTensor of string.
    Returns:
      a Tensor/SparseTensor of indexes (int) of the same shape as x.
    """
    table = lookup.index_table_from_tensor(
        vocab,
        default_value=len(vocab))
    return table.lookup(x)

  return _map_to_int(x)


# TODO(brandondura): update this to not depend on tf layer's feature column
# 'sum' combiner in the future. 
開發者ID:googledatalab,項目名稱:pydatalab,代碼行數:31,代碼來源:feature_transforms.py

示例6: string_to_int_mapper

# 需要導入模塊: from tensorflow.contrib import lookup [as 別名]
# 或者: from tensorflow.contrib.lookup import index_table_from_tensor [as 別名]
def string_to_int_mapper(keys_to_map, mapping, num_oov_buckets=1, suffix="_id"):
  """Creates a mapping function to convert strings to ints in a tf.data.Dataset.

  For `dataset` outputs of type `str`, uses the list of strings in the given
  input `mapping` to look up the strings using tf.contrib.lookup and convert
  them to same-shape tensors of size tf.int32.

  Example:
    vocab = ['the', 'fox', 'jumped']
    dataset = dataset.map(string_to_int_mapper(['words'], mapping=vocab))
    dataset['words_id']  # <-- 'the' is mapped to 0, 'fox' to 1, etc...

  Args:
    keys_to_map: List of strings that are keys for tf.string Tensors to lookup.
    mapping: List of strings (or string tensors) to do the lookup. If the
        mapping is already a lookup table, then we directly use it.
    num_oov_buckets: Number of OOV buckets to use (default = 1).
    suffix: String to append to the given keys to indicate the mapped Tensors.

  Returns:
    _mapper: A mapping function that can be used with the tf.data.Dataset API.
  """
  if isinstance(mapping, LookupInterface):
    table = mapping
  else:
    table = contrib_lookup.index_table_from_tensor(
        mapping=mapping, num_oov_buckets=num_oov_buckets)

  def _mapper(dataset):
    for k in keys_to_map:
      dataset[k + suffix] = tf.to_int32(table.lookup(dataset[k]))
    return dataset
  return _mapper 
開發者ID:google-research,項目名稱:language,代碼行數:35,代碼來源:dataset_utils.py

示例7: get_lookup_table

# 需要導入模塊: from tensorflow.contrib import lookup [as 別名]
# 或者: from tensorflow.contrib.lookup import index_table_from_tensor [as 別名]
def get_lookup_table(self):
    """Create the lookup table base on the vocabulary."""
    return contrib_lookup.index_table_from_tensor(
        mapping=self._idx2str, num_oov_buckets=self._num_oov_buckets) 
開發者ID:google-research,項目名稱:language,代碼行數:6,代碼來源:embedding_utils.py

示例8: make_iterator_from_text_dataset

# 需要導入模塊: from tensorflow.contrib import lookup [as 別名]
# 或者: from tensorflow.contrib.lookup import index_table_from_tensor [as 別名]
def make_iterator_from_text_dataset(text_dataset, batch_size, unit_dict, shuffle=False, bucket_width=-1, num_cores=4):

    from tensorflow.contrib.lookup import index_table_from_tensor
    table = index_table_from_tensor(mapping=list(unit_dict.values()))

    dataset = tf.data.TextLineDataset(text_dataset)
    dataset = dataset.map(lambda str: tf.string_split([str], delimiter='').values)
    dataset = dataset.map(lambda chars: (chars, tf.size(chars)))
    dataset = dataset.map(lambda chars, size: (table.lookup(chars), size))
    if shuffle is True:
        dataset = dataset.shuffle(buffer_size=1000000, reshuffle_each_iteration=True)

    def batching_fun(x):

        labels_shape = (tf.TensorShape([None]), tf.TensorShape([]), )

        return x.padded_batch(
            batch_size=batch_size,
            padded_shapes=(labels_shape)
        )

    if bucket_width == -1:
        dataset = batching_fun(dataset)
    else:

        def key_func(labels, labels_len):
            # labels_len = tf.shape(labels)[0]
            bucket_id = labels_len // bucket_width
            return tf.cast(bucket_id, dtype=tf.int64)

        def reduce_func(unused_key, windowed_dataset):
            return batching_fun(windowed_dataset)

        dataset = tf.data.Dataset.apply(dataset, tf.data.experimental.group_by_window(
            key_func=key_func, reduce_func=reduce_func, window_size=batch_size))

    dataset = dataset.prefetch(128)

    iterator = dataset.make_initializable_iterator()

    labels, labels_len = iterator.get_next()

    return BatchedData(
        iterator_initializer=iterator.initializer,
        inputs_filenames=None,
        labels_filenames=None,
        inputs=None,
        payload=None,
        inputs_length=None,
        labels=labels,
        labels_length=labels_len
    ) 
開發者ID:georgesterpu,項目名稱:avsr-tf1,代碼行數:54,代碼來源:io_utils.py

示例9: __init__

# 需要導入模塊: from tensorflow.contrib import lookup [as 別名]
# 或者: from tensorflow.contrib.lookup import index_table_from_tensor [as 別名]
def __init__(self,
               split_name,
               preprocess_fn,
               num_epochs,
               shuffle,
               random_seed=None,
               filter_filename=None,
               drop_remainder=True):
    """Initialize the dataset object.

    Args:
      split_name: A string split name, to load from the dataset.
      preprocess_fn: Preprocess a single example. The example is already
        parsed into a dictionary.
      num_epochs: An int, defaults to `None`. Number of epochs to cycle
        through the dataset before stopping. If set to `None` this will read
        samples indefinitely.
      shuffle: A boolean, defaults to `False`. Whether output data are
        shuffled.
      random_seed: Optional int. Random seed for shuffle operation.
      filter_filename: Optional filename to use for filtering.
      drop_remainder: If true, then the last incomplete batch is dropped.
    """
    # This is an instance-variable instead of a class-variable because it
    # depends on FLAGS, which is not parsed yet at class-parse-time.
    files = os.path.join(os.path.expanduser(FLAGS.dataset_dir),
                         'image_imagenet-%s@%i')
    filenames = {
        'train': generate_sharded_filenames(files % ('train', 1024))[:-40],
        'val': generate_sharded_filenames(files % ('train', 1024))[-40:],
        'trainval': generate_sharded_filenames(files % ('train', 1024)),
        'test': generate_sharded_filenames(files % ('dev', 128))
    }

    super(DatasetImagenet, self).__init__(
        filenames=filenames[split_name],
        reader=tf.data.TFRecordDataset,
        num_epochs=num_epochs,
        shuffle=shuffle,
        random_seed=random_seed,
        filter_fn=self.get_filter() if filter_filename is not None else None,
        drop_remainder=drop_remainder)
    self.split_name = split_name
    self.preprocess_fn = preprocess_fn

    self.filename_list = None
    if filter_filename is not None:
      with tf.gfile.Open(filter_filename, 'r') as f:
        filename_list = json.load(f)
        filename_list = tf.constant(filename_list['values'])
        filename_list = index_table_from_tensor(
            mapping=filename_list, num_oov_buckets=0, default_value=-1)
      self.filename_list = filename_list 
開發者ID:google-research,項目名稱:s4l,代碼行數:55,代碼來源:datasets.py


注:本文中的tensorflow.contrib.lookup.index_table_from_tensor方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。