本文整理匯總了Python中tensorflow.contrib.learn.python.learn.learn_runner.run方法的典型用法代碼示例。如果您正苦於以下問題:Python learn_runner.run方法的具體用法?Python learn_runner.run怎麽用?Python learn_runner.run使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.contrib.learn.python.learn.learn_runner
的用法示例。
在下文中一共展示了learn_runner.run方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: main
# 需要導入模塊: from tensorflow.contrib.learn.python.learn import learn_runner [as 別名]
# 或者: from tensorflow.contrib.learn.python.learn.learn_runner import run [as 別名]
def main(argv=None):
"""Run a Tensorflow model on the Movielens dataset."""
env = json.loads(os.environ.get('TF_CONFIG', '{}'))
# First find out if there's a task value on the environment variable.
# If there is none or it is empty define a default one.
task_data = env.get('task') or {'type': 'master', 'index': 0}
argv = sys.argv if argv is None else argv
args = create_parser().parse_args(args=argv[1:])
trial = task_data.get('trial')
if trial is not None:
output_path = os.path.join(args.output_path, trial)
else:
output_path = args.output_path
learn_runner.run(experiment_fn=make_experiment_fn(args),
output_dir=output_path)
示例2: main
# 需要導入模塊: from tensorflow.contrib.learn.python.learn import learn_runner [as 別名]
# 或者: from tensorflow.contrib.learn.python.learn.learn_runner import run [as 別名]
def main(argv=None):
"""Run a Tensorflow model on the Reddit dataset."""
env = json.loads(os.environ.get('TF_CONFIG', '{}'))
# First find out if there's a task value on the environment variable.
# If there is none or it is empty define a default one.
task_data = env.get('task') or {'type': 'master', 'index': 0}
argv = sys.argv if argv is None else argv
args = create_parser().parse_args(args=argv[1:])
trial = task_data.get('trial')
if trial is not None:
output_dir = os.path.join(args.output_path, trial)
else:
output_dir = args.output_path
learn_runner.run(experiment_fn=get_experiment_fn(args),
output_dir=output_dir)
示例3: local_analysis
# 需要導入模塊: from tensorflow.contrib.learn.python.learn import learn_runner [as 別名]
# 或者: from tensorflow.contrib.learn.python.learn.learn_runner import run [as 別名]
def local_analysis(args):
if args.analysis:
# Already analyzed.
return
if not args.schema or not args.features:
raise ValueError('Either --analysis, or both --schema and --features are provided.')
tf_config = json.loads(os.environ.get('TF_CONFIG', '{}'))
cluster_spec = tf_config.get('cluster', {})
if len(cluster_spec.get('worker', [])) > 0:
raise ValueError('If "schema" and "features" are provided, local analysis will run and ' +
'only BASIC scale-tier (no workers node) is supported.')
if cluster_spec and not (args.schema.startswith('gs://') and args.features.startswith('gs://')):
raise ValueError('Cloud trainer requires GCS paths for --schema and --features.')
print('Running analysis.')
schema = json.loads(file_io.read_file_to_string(args.schema).decode())
features = json.loads(file_io.read_file_to_string(args.features).decode())
args.analysis = os.path.join(args.job_dir, 'analysis')
args.transform = True
file_io.recursive_create_dir(args.analysis)
feature_analysis.run_local_analysis(args.analysis, args.train, schema, features)
print('Analysis done.')
示例4: main
# 需要導入模塊: from tensorflow.contrib.learn.python.learn import learn_runner [as 別名]
# 或者: from tensorflow.contrib.learn.python.learn.learn_runner import run [as 別名]
def main(unused_argv):
if not FLAGS.input_dir:
raise ValueError("Input dir should be specified.")
if FLAGS.eval_dir:
train_file_pattern = os.path.join(FLAGS.input_dir, "examples*")
eval_file_pattern = os.path.join(FLAGS.eval_dir, "examples*")
else:
train_file_pattern = os.path.join(FLAGS.input_dir, "examples*[0-7]-of-*")
eval_file_pattern = os.path.join(FLAGS.input_dir, "examples*[89]-of-*")
if not FLAGS.num_classes:
raise ValueError("Number of classes should be specified.")
if not FLAGS.sparse_features:
raise ValueError("Name of the sparse features should be specified.")
learn_runner.run(
experiment_fn=_def_experiment(
train_file_pattern,
eval_file_pattern,
FLAGS.batch_size),
output_dir=FLAGS.export_dir)
示例5: main
# 需要導入模塊: from tensorflow.contrib.learn.python.learn import learn_runner [as 別名]
# 或者: from tensorflow.contrib.learn.python.learn.learn_runner import run [as 別名]
def main(argv=None):
"""Run a Tensorflow model on the Criteo dataset."""
env = json.loads(os.environ.get('TF_CONFIG', '{}'))
# First find out if there's a task value on the environment variable.
# If there is none or it is empty define a default one.
task_data = env.get('task') or {'type': 'master', 'index': 0}
argv = sys.argv if argv is None else argv
args = create_parser().parse_args(args=argv[1:])
trial = task_data.get('trial')
if trial is not None:
output_dir = os.path.join(args.output_path, trial)
else:
output_dir = args.output_path
# Do only evaluation if instructed so, or call Experiment's run.
if args.eval_only_summary_filename:
experiment = get_experiment_fn(args)(output_dir)
# Note that evaluation here will appear as 'one_pass' in tensorboard.
results = experiment.evaluate(delay_secs=0)
# Converts numpy types to native types for json dumps.
json_out = json.dumps(
{key: value.tolist() for key, value in results.iteritems()})
with tf.Session():
tf.write_file(args.eval_only_summary_filename, json_out).run()
else:
learn_runner.run(experiment_fn=get_experiment_fn(args),
output_dir=output_dir)
示例6: main
# 需要導入模塊: from tensorflow.contrib.learn.python.learn import learn_runner [as 別名]
# 或者: from tensorflow.contrib.learn.python.learn.learn_runner import run [as 別名]
def main(unused_argv):
tf.flags.mark_flag_as_required('model_dir')
tf.flags.mark_flag_as_required('pipeline_config_path')
config = tf.contrib.learn.RunConfig(model_dir=FLAGS.model_dir)
learn_runner.run(
experiment_fn=build_experiment_fn(FLAGS.num_train_steps,
FLAGS.num_eval_steps),
run_config=config,
hparams=model_hparams.create_hparams())
示例7: main
# 需要導入模塊: from tensorflow.contrib.learn.python.learn import learn_runner [as 別名]
# 或者: from tensorflow.contrib.learn.python.learn.learn_runner import run [as 別名]
def main(unused_argv):
tf.flags.mark_flag_as_required('model_dir')
tf.flags.mark_flag_as_required('pipeline_config_path')
config = tf.contrib.learn.RunConfig(model_dir=FLAGS.model_dir)
learn_runner.run(
experiment_fn=_build_experiment_fn(FLAGS.num_train_steps,
FLAGS.num_eval_steps),
run_config=config,
hparams=model_hparams.create_hparams())
示例8: run
# 需要導入模塊: from tensorflow.contrib.learn.python.learn import learn_runner [as 別名]
# 或者: from tensorflow.contrib.learn.python.learn.learn_runner import run [as 別名]
def run(params, problem_instance, train_preprocess_file_path,
dev_preprocess_file_path):
"""Runs an Estimator locally or distributed.
Args:
data_dir: The directory the data can be found in.
model_name: The name of the model to use.
output_dir: The directory to store outputs in.
train_steps: The number of steps to run training for.
eval_steps: The number of steps to run evaluation for.
schedule: (str) The schedule to run. The value here must
be the name of one of Experiment's methods.
"""
train_preprocess_file_path = os.path.abspath(train_preprocess_file_path)
dev_preprocess_file_path = os.path.abspath(dev_preprocess_file_path)
print("train preprocess", train_preprocess_file_path, "dev preprocess", dev_preprocess_file_path)
exp_fn = make_experiment_fn(
params,
problem_instance,
train_preprocess_file_path=train_preprocess_file_path,
dev_preprocess_file_path=dev_preprocess_file_path)
# Create hparams and run_config
#run_config = trainer_utils.create_run_config(params.model_dir)
run_config = create_run_config(params.model_dir)
hparams = trainer_utils.create_hparams(
params.hparams_set,
params.data_dir,
passed_hparams=params.hparams)
if trainer_utils.is_chief():
trainer_utils.save_metadata(params.model_dir, hparams)
learn_runner.run(
experiment_fn=exp_fn,
schedule=params.schedule,
run_config=run_config,
hparams=hparams)
示例9: main
# 需要導入模塊: from tensorflow.contrib.learn.python.learn import learn_runner [as 別名]
# 或者: from tensorflow.contrib.learn.python.learn.learn_runner import run [as 別名]
def main(argv=None):
"""Run a Tensorflow model on the Iris dataset."""
args = parse_arguments(sys.argv if argv is None else argv)
tf.logging.set_verbosity(tf.logging.INFO)
learn_runner.run(
experiment_fn=get_experiment_fn(args),
output_dir=args.job_dir)
示例10: __init__
# 需要導入模塊: from tensorflow.contrib.learn.python.learn import learn_runner [as 別名]
# 或者: from tensorflow.contrib.learn.python.learn.learn_runner import run [as 別名]
def __init__(self, epilog=None, datalab_epilog=None):
self.full_parser = argparse.ArgumentParser(epilog=epilog)
self.datalab_help = []
self.datalab_epilog = datalab_epilog
# Datalab help string
self.full_parser.add_argument(
'--datalab-help', action=self.make_datalab_help_action(),
help='Show a smaller help message for DataLab only and exit')
# The arguments added here are required to exist by Datalab's "%%ml train" magics.
self.full_parser.add_argument(
'--train', type=str, required=True, action='append', metavar='FILE')
self.full_parser.add_argument(
'--eval', type=str, required=True, action='append', metavar='FILE')
self.full_parser.add_argument('--job-dir', type=str, required=True)
self.full_parser.add_argument(
'--analysis', type=str,
metavar='ANALYSIS_OUTPUT_DIR',
help=('Output folder of analysis. Should contain the schema, stats, and '
'vocab files. Path must be on GCS if running cloud training. ' +
'If absent, --schema and --features must be provided and ' +
'the master trainer will do analysis locally.'))
self.full_parser.add_argument(
'--transform', action='store_true', default=False,
help='If used, input data is raw csv that needs transformation. If analysis ' +
'is required to run in trainerm this is automatically set to true.')
self.full_parser.add_argument(
'--schema', type=str,
help='Schema of the training csv file. Only needed if analysis is required.')
self.full_parser.add_argument(
'--features', type=str,
help='Feature transform config. Only needed if analysis is required.')
示例11: main
# 需要導入模塊: from tensorflow.contrib.learn.python.learn import learn_runner [as 別名]
# 或者: from tensorflow.contrib.learn.python.learn.learn_runner import run [as 別名]
def main(argv=None):
args = parse_arguments(sys.argv if argv is None else argv)
local_analysis(args)
set_logging_level(args)
# Supress TensorFlow Debugging info.
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
learn_runner.run(
experiment_fn=get_experiment_fn(args),
output_dir=args.job_dir)
示例12: main
# 需要導入模塊: from tensorflow.contrib.learn.python.learn import learn_runner [as 別名]
# 或者: from tensorflow.contrib.learn.python.learn.learn_runner import run [as 別名]
def main(unused_argv):
print("Worker index: %d" % FLAGS.worker_index)
learn_runner.run(experiment_fn=_create_experiment_fn,
output_dir=FLAGS.output_dir,
schedule=FLAGS.schedule)
示例13: test_run_with_custom_schedule
# 需要導入模塊: from tensorflow.contrib.learn.python.learn import learn_runner [as 別名]
# 或者: from tensorflow.contrib.learn.python.learn.learn_runner import run [as 別名]
def test_run_with_custom_schedule(self):
self.assertEqual(
"simple_task, default=None.",
learn_runner.run(build_experiment,
output_dir="/tmp",
schedule="simple_task"))
示例14: test_run_with_explicit_local_run
# 需要導入模塊: from tensorflow.contrib.learn.python.learn import learn_runner [as 別名]
# 或者: from tensorflow.contrib.learn.python.learn.learn_runner import run [as 別名]
def test_run_with_explicit_local_run(self):
self.assertEqual(
"local_run",
learn_runner.run(build_experiment,
output_dir="/tmp",
schedule="local_run"))
示例15: test_schedule_from_tf_config
# 需要導入模塊: from tensorflow.contrib.learn.python.learn import learn_runner [as 別名]
# 或者: from tensorflow.contrib.learn.python.learn.learn_runner import run [as 別名]
def test_schedule_from_tf_config(self):
os.environ["TF_CONFIG"] = json.dumps(
{"cluster": build_distributed_cluster_spec().as_dict(),
"task": {"type": "worker"}})
# RunConfig constructor will set job_name from TF_CONFIG.
config = run_config.RunConfig()
self.assertEqual(
"train",
learn_runner.run(lambda output_dir: TestExperiment(config=config),
output_dir="/tmp"))